

A Song of Text and Fidelity: Analyzing Textual Similarity and Critical Reception in Game of Thrones Alexandra Barrett-Spring 2027

INTRODUCTION

Book adaptations represent a multibillion-dollar industry-if done right. Adapting a beloved novel brings both opportunity and risk: win over fans and you have a Harry Potter-level success; miss the mark and you join the ranks of Eragon.

Game of Thrones provides one of the most striking examples of this tension. Once celebrated for its storytelling and worldbuilding, the series became infamous for the sharp decline in its final seasons—coinciding with the point at which the show outpaced George R.R. Martin's unfinished A Song of Ice and

This project investigates whether the series' critical success can be linked to how closely the show's dialogue aligns with the source material. By comparing subtitles from Game of Thrones episodes to the text of the original books, I quantify textual similarity and explore whether higher similarity correlates with positive critical reception.

Through this analysis, I aim to uncover the relationship and degree to which fidelity to the source material truly predicts critical success—or if creative adaption can stand alone.

METHODS

Data Source

- · Subtitles of Seasons 1-6 of Game of Thrones collected from publicly available transcripts.
- Text from the released books of A Song of Ice and Fire by George R.R. Martin.
- Metacritic ratings used to measure critical reception.
- · Eight configurations of comparison texts listed below:

	Whole Book Series (WBS)	Chapter Mapped per Episode (CM)
All	WBS Sentences	CM Sentences
	WBS Sentences SWR (Stop Words Removed)	CM Sentences SWR (Stop Words Removed)
y	WBS Dialogue	CM Dialogue
Only Dialogue	WBS Dialogue SWR (Stop Words Removed)	CM Dialogue SWR (Stop Words Removed)

Similarity Calculations

Textual Fidelity:

- · Exact Match percent of subtitle lines appearing in book
- · Levenshtein distance edit distance thresholds used to calculate episode-level similarity.
- Jaccard Similarity (q-gram, q = 3) proportion of overlapping characters per line.

Semantic Similarity:

- Word2Vec embeddings Skip Gram and CBOW models trained on book and subtitle text: cosine similarity used to compute episode averages.
- Word2Vec & TF-IDF weighting embeddings to emphasize rarer, meaningful words.
- GloVe embeddings co-occurrence based word vectors.

Chi-square tests performed between similarity and ratings categorized by tertiles (Low: 0-33%, Medium: 34-66%, High: 67–100%). Polynomial regressions assessed percent similarity versus Metacritic ratings, assumptions checked, models validated via 10-fold CV and ANOVA.

Dr. Jitendra Sai Kota

Figure 1: Direction of Percent Similarity Effects on Metacritic Ratings All Tests vs Statistically Significant Tests ☐ All Tests ☐ Significant Only

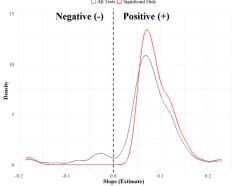
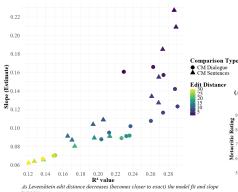



Table 1: Regression and Chi-square Analysis Across Similarity Methods

	Linear	Regres	sion Metrics	Chi-Square Metrics			
Similarity Method	Mean R ²	Mean Slope Est.	% Models Significant (p<0.05)	% Chi Sq Tests Significant (p<0.05)	Mean Effect Size (Cramer's V)		
Jaccard Similarity	0.23	0.11	100%	63%	0.32		
Levenshtein (dist < 10)	0.17	0.10	98%	64%	0.30		
Exact	0.14	0.13	88%	38%	0.27		
Word2vec: CBOW & TF-IDF	0.12	0.09	50%	25%	0.26		
Word2vec: CBOW	0.10	0.08	50%	13%	0.23		
GloVe	0.08	0.004	50%	0%	0.19		
Word2vec: Skip Gram & TF-IDF	0.07	0.05	50%	19%	0.19		
Word2vec: Skip Gram	0.04	0.02	25%	0%	0.17		
Donnessian nesults from linear models. Chi consus results from non constants of independence between							

similarity categories and rating categories (High, Med, Low)

Figure 4: Percent Similarity vs Metacritic Rating Model Fit

Table 2: Top To Linear Regression Models							
Similarity Method	R ²	Slope Est.	Comparison Type				
Levenshtein (dist = 1)	0.29	0.23	CM Sentences				
Levenshtein (dist = 2)	0.29	0.21	CM Sentences				
Exact	0.24	0.23	CM Sentences				
Levenshtein (dist = 3)	0.27	0.19	CM Sentences				
Jaccard Similarity	0.33	0.11	CM Sentences SWR				
Levenshtein (dist = 3)	0.28	0.16	CM Dialogue				
Levenshtein (dist = 5)	0.29	0.14	CM Dialogue				
Levenshtein (dist = 2)	0.26	0.17	CM Dialogue				
Levenshtein (dist = 5)	0.27	0.16	CM Sentences				
Jaccard Similarity	0.31	0.11	CM Sentences				

Figure 2: Average Similarity v. Metacritic Scores per Episode Across All Comparisons and Methods



Figure 3: Average Statistically Significant Models' Performance Across Methods and Book Comparison Types

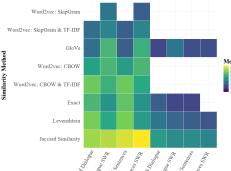
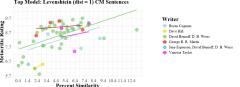



Figure 5: Writer-Level Similarity Effect on Metacritic Ratings

(A) Interaction Plot: Percent Similarity by Writer

RESULTS

Overall Trends:

- Linear regressions favored in 83% of cases (p ≥ 0.05,
- 90% of slopes positive; 77% of models significant (p <0.05), 57% (p < 0.01). 97% of these slopes were positive. (Figure 1)
- · Full-series analysis shows significant positive correlations. (Figure 1 and 2)

Comparison Text and Similarity Method Analysis:

- Chapter-mapped had most statistically significant models with the highest R². (Figure 3)
- Jaccard, Levenshtein, Exact strongest correlations on average, chi-square analysis confirmed moderate association. (Table 1 and Figure 3)
- Levenshtein improves with stricter thresholds (less distance) = more exact) (Figure 4)

Top models: (Table 2)

- Jaccard: Highest $R^2 = 0.33$, $\beta = 0.10$ (each 1% similarity \rightarrow +0.10 ratings)
- Levenshtein (dist = 2) $R^2 = 0.29$, $\beta = 0.23$ (Best R^2 and β) Model Validation:
- RMSE from 10-fold CV confirms Jaccard, Levenshtein, Exact as best performers.

Writer's Effect:

- · Interaction with Writer improved only 6% of models; Writer as the main effect improved 40% of models.
- · George R.R. Martin is the only writer with significant negative slopes, and lowest variation in his ratings for writers > 3 episodes (Figure 5 (B) & (C)).

CONCLUSION

- Linear models dominated (83%) and gave clear, interpretable slopes.
- Across all models, higher similarity between source texts and subtitles generally predicted higher Metacritic ratings, with strongest effects observed for Jaccard, Levenshtein, and Exact match methods.
- Closer-to-exact similarity was the strongest predictor of Metacritic ratings across the show, highlighting the importance of precise adaptation fidelity.
- Including Writer improved model fit in some cases: 40% affected overall ratings, but only 6% changed the similarityrating relationship. George R.R. Martin is the only writer with significantly negative slopes, likely due to low variation in his ratings and the fact that similarity compares his episodes to his own source material

FUTURE WORK

- Refine word embedding models to capture greater context specific patterns.
- Investigate further George R.R. Martin's effect on models.
- Add additional variables (e.g., violence and production features) to assess impact.
- Examine other adaptations (e.g., The Witcher and Dune) to determine whether close textual fidelity yields favorable critic reception.