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METHODS
Dataset:
 We used DRIVE color fundus photographs with 

expert vessel masks. We also performed data 
augmentation with horizontal and vertical flips, 
small rotations, and color jitter.

U-Net:
 The architecture uses four encoder and four 

decoder stages with skip connections. For the 
baseline model, we use pixel-wise cross-entropy 
loss, the Adam optimizer with a learning rate of 
10−4, and a batch size of four for 175 iterations 
per fold.

Persistent Homology:
 Input: predicted vessel probability map 𝑝𝑝:Ω →

[0,1] on a 2D grid of pixels Ω.
 Filtration: for each threshold value 𝜏𝜏, define 

Ω𝜏𝜏 = 𝑥𝑥 ∈ Ω:𝑝𝑝(𝑥𝑥) ≥ 𝜏𝜏 , a superlevel set of 
images by increasing intensity value.

 Cubical complexes: interpret each Ω𝜏𝜏 as a union 
of pixels to obtain a nested family of cubical 
complexes.

 Persistent homology: track when topological 
features such as holes and connected components 
appear and disappear along the filtration.

Motivation:
 Retinal vessel segmentation is 

necessary for the diagnosis of 
diabetic retinopathy, as in the case 
of the DRIVE dataset.

 To be clinically trustworthy, the 
results need to be non-arbitrary 
and interpretable, not just having 
high segmentations scores.

Problem:
 Standard U-Net architectures 

optimize local, pixel-wise overlap 
and cannot reliably model global, 
topological features.

Proposed Solution:
➢ Augment U-Net with Persistent 
Homology (PH).

INTRODUCTION

DISCUSSION
Interpretation of the Results:
 Including topological information into the analysis with U-Net made modest 

improvements to the segmentation quality. 
 On the relatively small dataset, it took both the topological loss term as well as the 

topological modulation of the feature maps of U-Net for this modest to improvement 
to be made.
 On the one hand, this suggests that topological augmentation does improve 

segmentation, even on small, complex datasets.
 However, it also suggests that augmenting models in additional ways with 

topological features is not immediately redundant; there may be more 
topological augmentation required for U-Net to fully model the topology of the 
underlying data.

When to use Topological Augmentation:
 From the results, we can see that the topologically augmented U-Net was more 

confident and less likely to include unnecessary pixels in its predicted segmentation 
mask.

 Situations where this careful, predictable shape and behavior is desired appears to be 
the ideal circumstance for persistent homology in machine learning.

CODE
https://github.com/cfanning8/Analyti
csDayFall2025PersistentHomology

CONCLUSION
1. PersLay makes U-Net retinal vessel segmentation topology-aware with moderate 

improvements to the segmentation results.
2. The topological augmentations should be used to augment segmentation networks in 

cases such as these where they provide an advantage over the baseline architecture:
 Small datasets wherein using a simpler model with explicit mathematical 

guarantees (from persistent homology) mean that we can rely on properties of the 
data without needing a larger amount of it.

 Data that is known to have topological structure (in this case, retinal fundus images 
have plenty of meaning in terms of connected components and loops in the 
images).

 Data where simple model architectures work well, such that complicating the 
architecture without providing more mathematical meaning does not necessarily 
improve the performance.

 Situations such as medical imaging where there is a major emphasis on the 
reliability of the results.
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Fig 3. Visual comparison of retinal vessel segmentation results for the six samples with the highest IoU improvement using PersLay U-Net over baseline U-Net. 

RESULTS
Intersection over Union (IoU):
 Baseline: 0.5829
 Topology-Aware U-Net: 0.5857
Dice Loss:
 Baseline: 0.7358
 Topology-Aware: 0.7379
Combined Topological Loss:
 Baseline: 0.1957
 Topology-Aware: 0.1722
Probability Map Interpretation: 
 The topology-aware U-Net gives sharper, more confident vessel segmentations than 

the baseline U-Net does.

Fig 1. Sample retinal fundus images for four patients. The vessel 
segmentation masks are highlighted in gold in front of the grayscale 
images, and some statistics are given in the top left of each image.

PersLay Vectorization:
 Persistence diagrams are multisets of birth-

death pairs. As such, they cannot be used as 
input to machine learning models. We must 
first vectorize them.

 PersLay is a differentiable, stable, trainable 
vectorization layer for persistence diagrams:
1. First, landmark status is applied to 

certain points ℓ𝑗𝑗 in the persistence 
diagram.

2. Then distances from the landmark are 
pooled by:

𝑣𝑣𝑗𝑗 = �
𝑖𝑖

𝜑𝜑 𝑏𝑏𝑖𝑖 ,𝑑𝑑𝑖𝑖 − ℓ𝑗𝑗

Topology-Aware U-Net:
 This can be done by modulating the feature 

maps by the PersLay vectorized persistence 
diagram.

Topology-Aware Loss:
 The Wasserstein difference in persistence 

diagrams between the predicted 
segmentation and the ground truth are used 
to derive a topological loss term which is 
aggregated with the overall loss.

Fig 2. The persistent homology pipeline: we take an image as input, compute its zero- and one-dimensional homology groups, then 
we down sample into fifty-sample persistence barcodes.
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