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INTRODUCTION

DRIVE Datasef; Retinal Fundus mages, with Vessel Annotations

Motivation:

» Retinal vessel segmentation is
necessary for the diagnosis of
diabetic retinopathy, as in the case
of the DRIVE dataset.

» To be clinically trustworthy, the
results need to be non-arbitrary
and interpretable, not just having
high segmentations scores.

Problem:

» Standard U-Net architectures
optimize local, pixel-wise overlap
and cannot reliably model global,
topological features.

Proposed Solution:

Fig 1. Sample retinal fundus images for four patients. The vessel > Augment U_Net Wlth P ersistent
segmentation masks are highlighted in gold in front of the grayscale
Homology (PH).

images, and some statistics are given in the top left of each image.

METHODS

Dataset: PersLay Vectorization:

» We used DRIVE color fundus photographs with » Persistence diagrams are multisets of birth-
expert vessel masks. We also performed data death pairs. As such, they cannot be used as
augmentation with horizontal and vertical flips, input to machine learning models. We must
small rotations, and color jitter. first vectorize them.
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U-Net: » PersLay is a differentiable, stable, trainable
» The architecture uses four encoder and four vectorization layer for persistence diagrams:
decoder stages with skip connections. For the 1. First, landmark status is applied to
baseline model, we use pixel-wise cross-entropy certain points ¢; in the persistence

loss, the Adam optimizer with a learning rate of diagram.
10~%, and a batch size of four for 175 iterations 2. Then distances from the landmark are
per fold. pooled by:

Persistent Homology:

» Input: predicted vessel probability map p: ) =
[0,1] on a 2D grid of pixels Q.

» Filtration: for each threshold value 7, define
Q, = {x € Q:p(x) = 1}, a superlevel set of
images by increasing intensity value.

» Cubical complexes: interpret each (), as a union
of pixels to obtain a nested family of cubical
complexes.

» Persistent homology: track when topological
features such as holes and connected components
appear and disappear along the filtration.

v = ) ol )l )

Topology-Aware U-Net:

» This can be done by modulating the feature
maps by the PersLay vectorized persistence
diagram.

Topology-Aware Loss:

» The Wasserstein difference in persistence
diagrams between the predicted
segmentation and the ground truth are used
to derive a topological loss term which is
aggregated with the overall loss.

Persistence Diagrams and Barcodes: From Retinal Images to Topological Features
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Fig 2. The persistent homology pipeline: we take an image as input, compute its zero- and one-dimensional homology groups, then
we down sample into fifty-sample persistence barcodes.
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Fig 3. Visual comparison of retinal vessel segmentation results for the six samples with the highest loU improvement using PersLay U-Net over baseline U-Net.

U-Net with Persistent Homology for Retinal Vessel Segmentation F p U t h On .

RESULTS

Intersection over Union (IoU):

» Baseline: 0.5829

» Topology-Aware U-Net: 0.5857
Dice Loss:

» Baseline: 0.7358

» Topology-Aware: 0.7379
Combined Topological Loss:

» Baseline: 0.1957

» Topology-Aware: 0.1722
Probability Map Interpretation:

» The topo.log\{}aware U-Net gives sharper, more confident vessel segmentations than
the baseline U-Net does.

DISCUSSION

Interpretation of the Results:

» Including topological information into the analysis with U-Net made modest
improvements to the segmentation quality.

» On the r_elativela/ small dataset, 1t took both the topological loss term as well as the
%opbologlcéal modulation of the feature maps of U-Net for this modest to improvement
o be made.

» On the one¢ hand, this suggests that topological augmentation does improve
segmentation, even on small, complex datasets.

» However, it also suggests that augmenting models in additional ways with
topological features 1s not immediately redundant; there may be more
topological augmentation required for U-Net to fully modelthe topology of the
underlying data.

When to use Topological Augmentation:

» From the results, we can see that the topologically augmented U-Net was more
conflident and less likely to include unnecessary pixels 1n its predicted segmentation
mask.

» Situations where this careful, predictable shape and behavior is desired appears to be
the 1deal circumstance for persistent homology in machine learning.

CONCLUSION

1. PersLay makes U-Net retinal vessel segmentation topology-aware with moderate
improvements to the segmentation results.

2. The topological augmentations should be used to augment segmentation networks in
cases such as these where they provide an advantage over the baseline architecture:

v Small datasets wherein usinﬁ a simpler model with explicit mathematical
uarantees (tfrom persistent omologty) mean that we can rely on properties of the
ata without needing a larger amount of it.

v" Data that is known to have topological structure (in this case, retinal fundus images
have pl)enty of meaning in terms of connected components and loops in the
images).

v' Data where simﬁle model architectures work well, such that complicating the
architecture without providing more mathematical meaning does not necessarily
improve the performance.

v" Situations such as medical imaging where there is a major emphasis on the
reliability of the results.
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