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INTRODUCTION

Optimal Transport (OT) provides a geometric framework for
comparing probability distributions, yet it remains highly
sensitive to outliers, which can severely distort transport
plans. Recent advances such as ROBOT address this by hard-
clipping excessive transport costs, improving robustness but
limiting flexibility.

We extend this idea through WROT-r, a unified r-power
formulation inspired by penalized weighted least squares. This
framework generalizes multiple robust OT variants into a single
mathematical family, where the parameter r acts as a
“robustness knob.” As r — 1*, the method enforces strict
outlier rejection (ROBOT behavior); as r increases, it transitions
into a soft-compression regime that gently damps large
transport costs instead of truncating them. Our theoretical
analysis and empirical results demonstrate that this tunable

robustness achieves greater stability and accuracy,
particularly under moderate noise and small-sample
conditions, paving the way for adaptive and efficient

Mathematical Framework

This unified cost function continuously links hard-clipping and
soft-compression regimes through the parameter r, creating a
smooth spectrum of robustness.
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Asr — 1%, it converges to the hard-clipped behavior of ROBOT,
enforcing strict outlier rejection.
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As r increases, it transitions into a soft-compression regime,
where penalties decay gradually rather than abruptly, preserving
stability while maintaining robustness.
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ROBUST GAN PERFORMACE ACROSS THE ROBUSTNESS SPECTRUM

The top row shows digit Os with white-image outliers, and the bottom row shows digit 1s with shoe outliers.

Wasserstein GAN WROT(r=2) WROT(r=3)

ROBOT(r=1)
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Mean Estimation Error vs Contamination (k)
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MEAN ESTIMATION ERROR ACROSS VARYING CONTAMINATION LEVELS (K)

This table reports the average estimation error (+ standard deviation) of each method under increasing contamination ratios.

BASE 0.204 £ 0.067 0.205 £ 0.068 0.288 £ 0.074 0.472 £0.082 0.899 £ 0.081 2.232 £0.085
ROBOT 0.371 £ 0.663 0.493 £0.942 0.605 = 0.933 0.928 £ 1.249 0.495 £ 0.695 0.330 £0.525
PWI(r =1.5) 0.220 + 0.086 0.220 + 0.090 0.303 £ 0.127 0412 +0.141 0343 +£0.174 0.239 +0.107
PW (r=2) 0.232 £ 0.079 0.233 £ 0.083 0.297 £ 0.090 0.392 £0.123 0.349 £ 0.171 0.263 £ 0.082
PW (r=3) 0.265+0.119 0.266 £0.113 0.267 £0.077 0.363 £ 0.099 0.386 £0.175 0.340 £ 0.146

EXPERIMENTAL SETUP

Robust GAN — MNIST (0) vs White Image:

< Inliers: digit “0”; Outliers: all-white images (pixel = 1);
grayscale 28x28 flattened 784-D.

% DCGAN-style Generator (ConvTranspose2d + BN/RelLU +
Sigmoid, z = 64) trained with robust OT loss (ROBOT/PW)
using Adam (n = 2x1073, g5, = 0.2, 10* steps); outliers from
final good set.

Robust GAN — MNIST vs Fashion-MNIST

« Inliers: MNIST class 1; Outliers: Fashion-MNIST class 9
(n=6000,6=0.2); 28x28 flattened pixels.

< Same generator and training setup (Adam 2x1073, &g, = 0.2,
10* steps, GPU/AMP enabled); A€{2, 4, .., 38}, metrics =
masking & swamping vs A + generated image grids.

Mean Estimation:

< Data: Synthetic Gaussian inliers with mean ptrue=[1,2,3,4,5],
d=5, n=100. Outliers are shifted by ke{0,0.1,0.5,,2,5} with
contamination €=0.2.

< Estimator: Entropy-smoothed OT mean with robust costs
(ROBOT, WROT(r=1.5), WROT(r=1), WROT(r=2), WROT(r=5)).
Optimization via Adam, up to 100k outer steps; inner
softmax updates on dual v every iteration.

< Errors were recorded for 100 simulations

OUTLIER DETECTION

Synthetic samples x; € R? are drawn from inliers
N(utrye’ls) and  outliers  N(ugrye’ —klg)  with
contamination ratio € = 0.2.

Points with max wij<1 are flagged as outliers, and
detection performance is measured using masking
(false negatives) and swamping (false positives).
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WROT-1.5
K Accuracy Precision Recall F Masking Swamping,
o 07695 +00342 01402:01895 0.0495:00614 00674+00791 0.9505+00614 0.0505 £ 0.0536
05 07778+00348 02251:02832 00700+00880 0094201058 0930000860 00453200544
07980 00301 | 04315503299 | 0.1935£0.1933 02304£01915 08065:0.1933 00509 £0.0600
2 09119:00435 08426201365 | 07470202666 07439+01895 02530+02666 0.0469 00473
5 09708:00351 08908201202 | 10000200000 0937800710 0000000000 00965 £00439

CONCLUSION

Robustness Behavior: For low contamination, smoother
costs with higher r perform best, preserving more data
while maintaining stability. Under moderate contamination,
mid-range r achieves the best balance between rejecting
outliers and retaining inliers. At high contamination (k 2 5),
strict clipping with low r — 1 (ROBOT) provides the most
reliable estimates by fully suppressing extreme outliers.
Key Insight: The r-power formulation acts as a continuous
robustness spectrum, enabling adaptive control between
stability and resistance to contamination.

Applications: Reliable mean estimation in noisy data,
Robust GANs that learn clean data manifolds under outlier
corruption., Adaptive OT pipelines for generative modeling,
clustering, and domain alignment.
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