CSE 1321L: Programming and Problem Solving | Lab
Assignment 5 Fall 2025
Module 4

What students will learn

Problem Solving.

Basic Program Structure.

Input and Output with the user.

Write code that includes while/for loop and nested loops logic with sequence types.
Structure program to include methods as well.

O O O OO

Content
0 Overview
0 Assignment5A: Selection Sort from Scratch
0 Assignment5B: Dungeon Treasure Map
0 Assignemnt5C: Frequency Dictionary

Overview:

For this assignment, you’re going to practice making logic in your code. It will include loops,
selection statements, functions and sequence types. In practical terms, this means you’re going
to expand on the concepts from previous assignments but also include things like lists and
tuples. Again, start early, practice, and ask a lot of questions.

Final note: Do not cheat

If your temptation is to look online, don’t. Come see us instead and ask questions —we are here to
help. Remember, you are going to have to write codes in your future job interviews, so learn it now
to secure a high-paying job later.

Page 1 of 8

Assignment5A: Selection Sort from Scratch

Write a method called myselectionsort(list) to sort a list of integers in ascending order without
using the built-in sort() or sorted() functions. Your function will take unsorted list as parameter and
return a sorted list.
You will implement your own sorting algorithm with nested loops inside your function and then
compare your result with the result of Python’s default sorting function.
Details:
0 Implement Selection Sort as described below:
O Selection Sort Algorithm (Step-by-Step Example):
= Start with the first position (index 0).
* Find the smallest value in the list and swap it with the element at index 0.
= Move to the nextindex (index 1) and again find the smallest value in the remaining
unsorted part of the list.
= Swap it with the element atindex 1.
= Continue this process until all elements are sorted.
* You will be using nested loops.
0 Example Walkthrough:
= Starting list: [5, 2,9, 1, 6]
= [teration 1: smallest elementin|[5,2,9, 1,6]is 1 > swap with5~>[1,2,9, 5, 6]
= [teration 2: smallest elementin[2, 9, 5, 6]is 2 > already in place > [1, 2, 9, 5, 6]
* |teration 3: smallestelementin[9, 5, 6]is 5> swapwith9~>[1,2,5, 9, 6]
* |teration 4: smallest elementin[9, 6] is 6 > swapwith9~>[1, 2, 5, 6, 9]
= [teration 5: last element already in place.
0 Finalsorted list: [1, 2, 5, 6, 9]
Requirements:
0 Prompt the user to enter a comma-separated list of numbers.
0 Convert the inputinto a list of integers before passing it to the function.
* You can use split function.
Call myselectionsort(list) function and save the returned list.
Print your sorted list.
Create another list using Python’s built-in sorted() function and print it.
Compare the two lists:
0 If both are identical > print "Both lists are identical!"
0 Otherwise > print "The lists are not the same."
Example runs are shown below. The user input is shown in red.
Sample Output #1:
Enter numbers separated by commas: 5,2,1,9,6
Original list: [5, 2, 1, 9, 6]
Sorted 1list (using my selection sort): [1, 2, 5, 6, 9]
Sorted list (using default function): [1, 2, 5, 6, 9]
Both lists are identical!
Sample Output #2:
Enter numbers separated by commas: 8,7,6,5,4,3,2,1
Original list: [8, 7, 6, 5, 4, 3, 2, 1]
Sorted list (using selection sort): [1, 2, 3, 4, 5, 6, 7, 8]
Sorted list (using default function): [1, 2, 3, 4, 5, 6, 7, 8]
Both lists are identical!

O O O O

Page 2 of 8

Assignment5B: Dungeon Treasure Map

In this assignment you will create a treasure hunt board game. Players will play on a board which
resembles a grid like this:

The exact dimensions of the grid will be determined by the player. Each square of the grid will
either have an ‘O’ representing an open square, a ‘T’ representing treasure, or an ‘X’ representing
treasure that has been collected.
Steps:
0 Prompt the user for the size of the grid (width and height)
0 Create alist called board, each cell will represent a row of the grid.
0 Inthe first cell of the board list, you’ll place a list.
0 Pick arandom number between 0 and 1. If the number is greater than or equal to 0.7 you’ll
add a Treasure ‘T’ to the next cell of the list. If the number is less than 0.7 you’ll add an open
‘O’ to the next cell of the list.
0 Keep track of how many treasures you are adding to the board in a separate variable called
numberOfUndiscoveredTreasures.
0 Repeat step (a) until you have a list that is the height the user asked for in step (1).
0 Repeat step (3) until the board is the width the user asked for in step 1.
0 Tell the user how many treasures you have hidden.
0 Next, you’ll ask the user to guess coordinates, you’ll check if they found treasure or not:
0 Askthe userto enter in a row number (0 to the width of the board -1)
0 Askthe userto enterin a column number (0 to the height of the board -1)
0 Checkthat location to seeifitis a “T” (Treasure) or an “O” (Open).

» Ifit’s a treasure tell the user they got treasure, change that cell of the board to an “X”
to indicate that it was already discovered. Lower the number of undiscovered
treasures by one.

= Ifit’s not a treasure, tell the user to try again.

= Keep asking the user to guess locations until the user has discovered all the
Treasures, then print out the whole board, and end the game.

Example runs are shown below. The user input is shown in red.

Page 3 of 8

Sample Output #1:
Enter the width of the grid: 2
Enter the height of the grid: 2
Number of treasures hidden: 1
Enter the row number (© to 1): ©
Enter the column number (@ to 1): ©
No treasure here, try again!
Enter the row number (0 to 1): 1
Enter the column number (@ to 1): 1
No treasure here, try again!
Enter the row number (0 to 1): ©
Enter the column number (@ to 1): 1
No treasure here, try again!
Enter the row number (0 to 1): 1
Enter the column number (@ to 1): ©
Congratulations! You found a treasure!
0O
X0
Congratulations! You've found all the treasures!
oo
X0

Sample Output #2:

Enter the width of the grid: 3
Enter the height of the grid: 3
Number of treasures hidden: 3

Enter the row number (0 to 2): ©
Enter the column number (0 to 2): ©
No treasure here, try again!

Enter the row number (0 to 2): ©
Enter the column number (0 to 2): 1
Congratulations! You found a treasure!
0XO0

00O

o0o0oO

Enter the row number (0 to 2): ©
Enter the column number (@ to 2): 2
No treasure here, try again!

Enter the row number (0 to 2): 1
Enter the column number (0 to 2): 1
No treasure here, try again!

Enter the row number (0 to 2):
Enter the column number (0 to 2): ©
No treasure here, try again!

Enter the row number (0 to 2): 1
Enter the column number (@ to 2): 2
Congratulations! You found a treasure!
0XO

00X

00O

Enter the row number (0 to 2): 2

Page 4 of 8

Enter the column number (@ to 2): 1
No treasure here, try again!

Enter the row number (0 to 2): 2
Enter the column number (@ to 2): ©
No treasure here, try again!

Enter the row number (0 to 2): 2
Enter the column number (@ to 2): 2
Congratulations! You found a treasure!
0Xo

00X
ongratulations! You've found all the treasures!

C

0XO
00X
00X

Page 5 of 8

Assignment5C: Frequency Dictionary

Write a Python program that repeatedly displays a menu asking the user to choose whether they
want to analyze letters or numbers.
Based on the choice, take comma-separated input, store it in a tuple, and pass it to a function
find_frequency(data) which returns a dictionary containing the frequency of each element.
In the main function, find the element(s) with the highest frequency and display them along with
their count.
The program should continue running until the user chooses to quit.
Requirements:
0 Display the following menu repeatedly:
o0 MainMenu
1.Enter letters
2. Enter numbers
3. Quit
0 Based on the choice:
1 > letters: ask Enter letters separated by commas:
2 > numbers: ask Enter numbers separated by commas:
3 = quit: print "Exiting program..." and terminate.
0 Convertinputinto a tuple:
= Letters > keep as strings
= Numbers > convert each toint
0 Callfind_frequency(data) with the tuple.
0 This function returns a dictionary where:
= key = element, value = frequency
O Inthe main function:
= Determine the maximum frequency.
= |dentify all element(s) with that frequency.
= Display the tuple, frequency dictionary, and the most frequent element(s) with their
frequency.
Example runs are shown below. The user input is shown in red.
Sample Output #1:
Main Menu
1. Enter letters
2. Enter numbers
3. Quit
Enter your choice: 1
Enter letters separated by commas: a,a,r,t,c,a,c
Tuple: ('a', 'a', 'r', 't', 'c', 'a', 'c'
Frequency dictionary: {'a': 3, 'r': 1, "t': 1, 'c': 2}
Most frequent element(s): a
Frequency: 3

e

Main Menu

1. Enter letters

2. Enter numbers

3. Quit

Enter your choice: 3
Exiting program...

Page 6 of 8

Sample Output #2:

Main Menu

1. Enter letters

2. Enter numbers

3. Quit

Enter your choice: 2

Enter numbers separated by commas: 1,2,3,3,3,2,2,4,8
Tuple: (1, 2, 3, 3, 3, 2, 2, 4, 8)

Frequency dictionary: {1: 1, 2: 3, 3: 3, 4: 1, 8: 1}
Most frequent element(s): 2, 3

Frequency: 3

Main Menu

1. Enter letters

2. Enter numbers

3. Quit

Enter your choice: 3
Exiting program...

Page 7 of 8

Submission Instructions:
0 Programs must follow the output format provided. This includes each blank line, colons (:),
and other symbols.
Programs must be working correctly.
Programs must be written in Python.
Programs must be submitted with the correct . py format.
Programs must be saved in files with the correct file name:

O O O O

= Assignment5A.py
= Assignment5B.py

= Assignment5C.py
0 Programs (source code files) must be uploaded to Gradescope by the due date.

Page 8 of 8

