CSE 1321L: Programming and Problem Solving | Lab
Assignment 7 Fall 2025
Review

What students will learn

Problem Solving.

Basic Program Structure.

Input and Output with the user.

Combine loops, conditionals, and functions into cohesive programs
Apply exception handling for robust user interaction.

O O O OO

Content
0 Overview
0 Assignment7A: Owl Cafe
0 Assignment7B: Owl Library
0 Assignemnt7C: Score Analyzer

Overview:

For this assignment, you’re going to practice making logic in your code. It will include all modules
covered in this course. In practical terms, this means you’re going to expand on the concepts from
previous assignments but also include things like classes, exception handling. Again, start
early, practice, and ask a lot of questions.

Final note: Do not cheat

If your temptation is to look online, don’t. Come see us instead and ask questions —we are here to
help. Remember, you are going to have to write codes in your future job interviews, so learn it now
to secure a high-paying job later.

Page 1 of 9

Assignment7A: Owl Cafe (Order Management System)
You are hired to help automate order management for a small cafe. The cafe sells the following
items:
e Coffee-$3.50
e Sandwich-$5.75
e Smoothie - $4.25
e Muffin-$2.75
Requirements:
0 Display a main menu where the user can:
1. Place an Order
2. View Daily Sales
3. Exit
0 When choosing Place Order, show the product list and allow the user to:
= Add multiple items in one order session.
= After each item, ask if they want to add another (Y/N).
= Use try—except to handle invalid input (non-numeric or out-of-range values).
= Save each order (item name, quantity, and cost) into a list.

0 Option 2 displays:
= Asummary of all items ordered that day.
= The total revenue earned.
0 Option 3 exists the program.
0 Write functions for (display_menu(), take_order(), show_sales())

Example runs are shown below. The user input is shown in red.

Sample Output #1:

[Owl Cafe]

1. Place Order

2. View Daily Sales
3. Exit

> 1

Menu Items:

1. Coffee - $3.50

2. Sandwich - $5.75

3. Smoothie - $4.25

4., Muffin - $2.75

Select an item (1-4): 8

Error: Please enter a number between 1 and 4.

Menu Items:

1. Coffee - $3.50

2. Sandwich - $5.75

3. Smoothie - $4.25

4. Muffin - $2.75

Select an item (1-4): 1
Enter quantity: 5

Added 5 Coffee(s) - $17.50
Add another item? (Y/N): y

Page 2 of 9

Menu Items:

1. Coffee - $3.50

2. Sandwich - $5.75

3. Smoothie - $4.25

4. Muffin - $2.75

Select an item (1-4): 2
Enter quantity: 4

Added 4 Sandwich(s) - $23.00
Add another item? (Y/N): n

Order complete! Total for this order: $40.50

[Owl Cafe]

1. Place Order

2. View Daily Sales
3. Exit

> 1

Menu Items:

1. Coffee - $3.50

2. Sandwich - $5.75

3. Smoothie - $4.25

4. Muffin - $2.75

Select an item (1-4): 4
Enter quantity: 3

Added 3 Muffin(s) - $8.25
Add another item? (Y/N): n

Order complete! Total for this order: $8.25

[Owl Cafe]

1. Place Order

2. View Daily Sales
3. Exit

> 2

Today's Sales:

- 5 Coffee(s): $17.50

- 4 Sandwich(s): $23.00
- 3 Muffin(s): $8.25
Total Sales: $48.75

[Owl Cafe]

1. Place Order

2. View Daily Sales

3. Exit

> 3

Thank you for visiting Owl Cafe!

Page 30of 9

Assignment7B: Owl Library

You are going to develop an object-oriented based library management system for Owl Library.
The system should allow users to view, borrow, return, and add books through a menu-driven
interface.
Your program will include two classes:
1. Book-represents an individual book
2. Library - manages all books and handles user interactions
The main program will create a Library object and display a main menu that lets users manage the
collection.
Class 1: Book
Attributes:
o0 title > the name of the book
0 is_borrowed > Boolean (default = False)
Methods:
0 __init_ (self, title)
Initializes the title and sets is_borrowed to False.
0 borrow(self)
= Ifavailable, mark as borrowed and print a confirmation; otherwise, display an error
message.
0 return_book(self)
= [f currently borrowed, mark as available and print confirmation; otherwise, display
an error message.
0 display_info(self, index)
* Prints the book index, title, and status (“Available” / “Borrowed”).
Class 2: Library
Attributes:
0 books - alist of Book objects.
Methods:
o __init__(self)
Initializes the library with the following default books:
= Python Basics, Intro to Al
0 show_books(self)
= Displays all books with their index and current status.
O borrow_book(self)
= Displays available books.
= Prompts the user for the index.
= Uses try—except to catch invalid input or out-of-range values.
= Calls the borrow() method of the selected book.
0 return_book(self)
= Displays all books.
= Prompts for index.
= Uses try—except to handle invalid input.
= Calls the return_book() method of the selected book.
0 add_book(self)
= Prompts the user to enter a book title.
= Creates a new Book object and adds it to the books list.
= Prints a confirmation message.

Page 4 of 9

Program Flow

1.

2
3.
4.
5

Create a Library object.
Continuously show the main menu.

Perform actions based on user input.

Use exception handling to validate all inputs.
Stop when the user chooses to exit.

Example runs are shown below. The user input is shown in red.

Sample Output #1:
[Owl Library]

1. View Books
2. Borrow Book
3. Return Book
4. Add Book

5. Exit

> 1

Books in Library:
@ - Python Basics (Available)
1 - Intro to AI (Available)

[Owl Library]

vu1-l>uuNl—\

View Books

. Borrow Book
. Return Book
. Add Book

. Exit

4

Enter the title of the new book: Game Design 101
"Game Design 101" has been added to the library!

[Owl Library]

v uih wWwNnER

. View Books
. Borrow Book
. Return Book
. Add Book

. Exit

Books in Library:

@ - Python Basics (Available)

1 - Intro to AI (Available)

2 - Game Design 101 (Available)
Select a book to borrow: 1

You borrowed "Intro to AI".

[Owl Library]

uiph WN R

. View Books
. Borrow Book
. Return Book
. Add Book

. Exit

Page 50of 9

> 3

Books in Library:

@ - Python Basics (Available)

1 - Intro to AI (Borrowed)

2 - Game Design 101 (Available)

Select a book to return: 2

Error: "Game Design 101" was not borrowed.

[Owl Library]

1. View Books
2. Borrow Book
3. Return Book
4. Add Book

5. Exit

> 3

Books in Library:

@ - Python Basics (Available)

1 - Intro to AI (Borrowed)

2 - Game Design 101 (Available)
Select a book to return: 1

You returned "Intro to AI".

[Owl Library]
1. View Books
2. Borrow Book
3. Return Book
4. Add Book
5. Exit

> 5

Exiting program... Goodbye!

Page 6 of 9

Assignment7C: Score Analyzer
You are asked to write a program that helps a teacher analyze student test scores using loops,
selection statements, and functions.
The program will prompt the teacher to enter the number of students and each student’s score.
It should then compute and display:
The highest score
The lowest score
¢ The average score
¢ How many students passed (score = 60)
e How many failed (score < 60)
Requirements:
0 Implement three functions:
0 get_scores()
= asks the user for the number of students, loops to collect scores, and returns a list
of integers.
0 analyze_scores(scores)
= takes the list of scores and calculates:
* highest, lowest, average, passes, and fails.
* returns these values as a tuple.
0 display_results(high, low, avg, passed, failed)
* prints the results according to the format.
0 Inmain(), call these functions appropriately.
0 Use loops and if/else for logic.
Example runs are shown below. The user input is shown in red.
Sample Output #1:
Enter number of students: 5
Enter score for student 1: 78
Enter score for student 2: 45
Enter score for student 3: 92
Enter score for student 4: 60
Enter score for student 5: 79

--- Score Report ---
Highest score: 92
Lowest score: 45
Average score: 70.8
Students passed: 4
Students failed: 1

Page 7 of 9

Sample Output #2:
Enter number of
Enter score for
Enter score for
Enter score for
Enter score for
Enter score for
Enter score for

students:

student
student
student
student
student
student

--- Score Report ---
Highest score: 92

Lowest score:

35

Average score: 64.5
Students passed: 4
Students failed: 2

Page 8 of 9

AUV A WNER

35
85
92
40
60
75

Submission Instructions:
0 Programs must follow the output format provided. This includes each blank line, colons (:),
and other symbols.
Programs must be working correctly.
Programs must be written in Python.
Programs must be submitted with the correct . py format.
Programs must be saved in files with the correct file name:

O O O O

= Assignment7A.py
= Assignment7B.py

= Assignment7C.py
0 Programs (source code files) must be uploaded to Gradescope by the due date.

Page 9 of 9

