
Page 1

CSE1322L - Lab 12

Concept Summary:

Using Java-Fx and / or Windows Forms

This week we are moving on from text-based programs to programs that have a GUI (Graphical
User Interface). What does this mean? A GUI is what is referred to as the front-end of a program
i.e. it is what you see and interact with when you use a program on your computer that is not text-
based (like windows, buttons, scrollbars, textboxes, etc.…) and a back-end which is a regular code
text file that contains all the methods that each detail how any of the GUI objects should act and
variables that store any necessary values for the program to function as intended.

Topic Listing

1. Pages 1-5 Discuss Important Details for Java Students

2. Pages 6-8 Discuss Important Details for C# Students

3. Page 9 is the Lab

Specifications: - Installing Java-FX

To be able to build these programs with a GUI in Java we will be making use of a Java Library
called JavaFX in IntelliJ.

Hopefully you already have IntelliJ installed and working.

You’ll need to add a new JDK to your IntelliJ install. Follow these steps:

1) Download the appropriate JavaFX JDK from this link:
https://www.azul.com/downloads/zulu-community/?version=java-13-mts&package=jdk-fx

a) Ensure you get a version 13 JDK-FX (There are also JDK, which won’t work).
b) Download it and unzip it into a folder. Never delete it, as it’ll be used for each

program you write in JavaFX. Make sure the folder is unzipped before
proceeding.

2) Open Intellij, create a new project, select JavaFX on the left:

https://www.azul.com/downloads/zulu-community/?version=java-13-mts&package=jdk-fx

Page 2

3) When prompted for JDK, choose “Add JDK” from the drop down, select the folder you
unzipped the above download into. You should now see Java 13 or Zulu 13 in the drop
down, select it.

4) If you did all the steps correctly as soon as the project loads you should be able to compile and run, and
you should see a Hello World window pop up. If not, repeat the steps and ask for help. Nothing will
work if that doesn’t work, so don’t go past this step until you have it working.

5) If you are on a mac, you may have to add the JavaFX library to your path. Follow the
“Add JavaFX Library” section instructions:
https://www.jetbrains.com/help/idea/javafx.html#add-javafx-lib

6) Every time you make a new GUI program make sure you select 13 from the
dropdown menu, you will never need to point IntelliJ to that folder again as long as
you do not delete it

https://www.jetbrains.com/help/idea/javafx.html#add-javafx-lib

Page 3

Installing SceneBuilder (Java):
After creating your first test program; click on the sample.fxml file. On the bottom you will

find a tab called “Scene Builder” click that.

You will immediately see a red exclamation mark with text asking you to install the “Scene
Builder Toolkit” and a link. Please click that link which will install the Scene Builder for you
automatically. The Scene Builder allows you to create these GUI apps by dragging and dropping
components on a window like buttons or otherwise; makes it easier to design how your program
will look while you implement functionality of these buttons with code; this will only need to be
done once

4. Please refer to this link to create a test Program (which has code and step by step

instructions provided to you). Please use this as a means to test if everything is set-up

correctly:

https://www.jetbrains.com/help/idea/developing-a-javafx-application-examples.html

NOTE - Please see below for instructions on how to add code to the Buttons using Java-FX

within IntelliJ

Making Variables for the Controller – Labels and Text Fields (Java)

The variables in the Controller class are responsible for storing the values that are
specific to your program’s intent. For example, if we were to implement a calculator,
there would exist a variable to store the value of the first number the user entered, another
to store the second value, and a third to store the result. These variables would be the
same ones that you are used to; of type integer, double etc…

Since, in a JavaFX GUI program, there exist no way to traditionally input and output
information to and from the user we instead have two special variables to take care of
something similar.

Page 4

New variable types that you may need to use are the:

1- (Input) TextField variable which is a variable the holds the text entered into a text

field you would have in your GUI

The primary way that your GUI program will take in information from the user would be
through the use of a GUI text field linked to the TextField variable; you will need to link

the GUI text field to a text field variable once declared in the Controller using the Scene
Builder. When the user runs the program and types in text, the TextField variable will

store the typed text to be used for a specific purpose that you

specify.

2- (Output) Label variable which would represent the text shown

on a label in your GUI

The primary way that your GUI will output information to a user
would be through the use of a GUI label linked to the Label
variable. You will need to link the variable to its GUI element so
that it reflects what the variable stores. When the user runs the
program and interacts with it, this field should reflect some sort
of output; for example, the result in the case of a calculator.

How to link a TextField or Label?

Once the either variable is declared in the Controller and GUI
counterpart is created in the Scene Builder, click on the label/text
field in the Scene Builder go the properties pane on the right
hand side and open the “Code” section; specify the variable
associated in the “fx:id” section.

Methods (Event Handlers) – Specifying the Actions of Buttons

Each button will need an event handler method for when they are clicked; you will make
these event handlers in the Controller class before assigning them to their respective GUI

button in the Scene Builder. The Event Handlers mostly look and work like regular
methods. An Event Handler is responsible for handling the action that the program will

undertake when a button is pressed; hence the name the event (button press) handler. This
idea can be expanded to objects that are not buttons but the idea remains the same. The

parameter of these methods should be (ActionEvent actionEvent); this parameter
represents the button press.

For example:

public void add(ActionEvent actionEvent) {

 //YOUR CODE

}

The function variableName.getText() can be used in an event handler for a button action

to retrieve the value entered by the user from a text field variable associated with a GUI

text field.

Page 5

The function variableName.setText() can be used in an event handler for a button

action to change the value in a label variable associated with a GUI label.

How to link an Event Handler to its GUI Button?

When visiting the Scene Builder and clicking to edit a button,

on the left “Properties” pane please open the “Code” section,

the “onAction” portion is where you will assign the event

handlers that you have already made to their respective

buttons. Please refer to the figure on the right.

Final Comments

When making a JavaFX project in IntelliJ, the GUI component

is handled by a file (by default) called the “sample.fxml” file;

this is where you will find the Scene Builder. It will appear as

text at first, please click the Scene Builder button on the

bottom.

The Controller is the file called “Controller.java”. Please pay

no mind to the “Main.java” file.

Please go to page 9 to start your first GUI Lab Exercise

Page 6

C# - Creating an Example GUI program

Creating a Window

The first step to creating a GUI application is to use the correct project type. From within Visual
Studio please select the “Windows Form Application”. Now that we have a project set up to
work with a GUI, let us get into the specifics on how to make a window.

NOTE: After the project finishes being made, the first page that should appear is the one with the

window already made. You should see a blank white window in the center panel instead of the

code you would normally find there when making a console application.

In order to see the code and be able to change it, please find the “Solution Explorer” panel which

should be on the right. Find the “Form1.cs” file and click on the dropdown arrow to see the

“Form1.Designer.cs” file and double click on it to open it.

NOTE: We still have a “Program.cs” file, however if you open it, it will only contain a few lines
of code inside the Main method.

Now you should see the code behind the design of the window. However, do NOT write any

code here yet.

We have already made our window, congratulations! (Feel free to change the look and size of

the window using the “Properties” panel.)

Creating Buttons

We can make many types of interactable objects in our window, but we will keep it simple and
use a clickable button.

1. First, go back to the “Form1.cs” file so that we can see the blank white window.

2. Please find the toolbox pop-out menu on the left side bar. Click on it to pop-out the

menu.

3. Go to the menu tab called “All Windows Forms” and click once on the choice/item

“Button”.

4. Move the mouse cursor back over the blank white page and you should notice the

cursor changes into a point with the “Button” icon on the lower right.

5. Clicking on the window will create a default button with a default size on that window.

You may also click and drag to create a button with the size of the area your cursor moved

over. Make sure to add the remaining buttons.

NOTE: The code in our “Form1.Designer.cs” file has changed, by adding a button object at
the bottom of the code.

Page 7

Creating an Event (Event Handler) (C#)

At this point, we will want to create an event object every time the button is pushed. This way we
will be able to tell when the button is pushed and what to do when it is pushed.

1. To add an event object for clicking on the button, simply double click on the button in the

window.

2. This will immediately take us to the “Form1.cs” file where a new method will have been

created for us named button1_Click.

3. We have added the ability of the button to create events after being clicked (even

without writing anything into the new click method)!

Creating an Event Listener

Lastly, we will create an event listener to handle the events (buttons being pushed) and display a
message, on the GUI, saying which number button was pushed.

1. First, we will need to create a text box on the window so that we can display our message.

Follow similar steps for creating the buttons, but this time look for the item “TextBox”.

2. Return to the “Form1.cs” file with our button1_click method. Using the new textbox

object and the parameter object sender, write some code into the method so that the

number of the sender (which was the button) displays in the text region of the textbox.

NOTE: The method button1_click is the event listener and it is handling events after the button

is clicked and creates that EventArgs e event that is the second parameter in that method.

Sample Output (C#):

Before button 1 is clicked:

After button 1 is clicked:

Page 8

Please go to page 9 to start your first GUI Lab Exercise

Page 9

FIRST GUI LAB Exercise (Common for C# and Java)

NOTE (for Java):

1. The “sample.fxml” file comes with a default GridPane object, please do not delete it
as it will unlink the “sample.fxml” from the “Controller.java” file

2. When submitting, please upload all the files in the “src” folder including the
Controller.java, Main.java, sample.fxml, and projectName.iml

NOTE (for C#):

1. Please submit the entire project Folder

Lab Instructions:

1. Create and design a program called MegaCalc! which should be a simple calculator that
has a front-end graphical user interface (GUI).

2. Design the window of size 400x300 pixels.

3. Add two text fields in which the user types the operands to a binary + operation.

4. Next add the ‘+’ button

Note: When the user presses the the program treats the text in the two fields as two
integers, adds them together

5. Finally, the resulting integer should be displayed on the screen as the text of a result

label.

Page 10

Submission Guidelines:

Please upload the following files onto Gradescope:

Java

Controller.java

Main.java

Calc.java

Lab12.fxml

C#

Form1.cs,

Form1.Designer.cs,

Program.cs

CalculatorClass (that which implements the interface)

Please follow the posted submission guidelines here:

https://ccse.kennesaw.edu/fye/submissionguidelines.php

Ensure you submit before the deadline listed on the lab schedule for CSE1322L here:

https://ccse.kennesaw.edu/fye/courseschedules.php

https://ccse.kennesaw.edu/fye/submissionguidelines.php
https://ccse.kennesaw.edu/fye/courseschedules.php

