Binary Numbers

Computers work best when things are on or off. Computers have only two numerals, zero and one. (Poor computers!)

We call numbers with only zero and one binary numbers. The "bi" in binary means two, like the two wheels on a bicycle. We call each place a bit, short for binary digit.

Binary numbers have places, just like decimal numbers, but they're times two places.
Ones place:
One stands alone and starts every system of numbers

Twos place:
Two times one

Fours place:
Two times two
Eights place: Two times four

What's next? \qquad
Each place is two times the one before it. We say this is a base two number system because we multiply by two to get to the next place.

Using this system, we can count as high as we want. We just keep adding more places on the left.

Let's try it: Arrange your cards like this. How many dots are showing?

College of Computing and Software Engineering
http://ccse.kennesaw.edu

Exercises

Write your age in years \qquad
Put your binary cards on the desk, with "one" on the right, then two, four, eight, and sixteen on the left. Starting with sixteen, turn cards over to take away dots until the number of dots is the same as your age in years.

Write a 1 for every card that is face up and a 0 for every card that's face down \qquad You have just written your age in years as a binary number!

Write the day of the month of your birth \qquad Example: For May 28, write 28.

Put your binary cards on the desk, with "one" on the right. Turn cards over, starting on the left, to take away dots until the number of dots is the same as the day of your birth.

Write a 1 for every card that is face up and a 0 for every card that's face down \qquad You have just written the day of month of your birth date as a binary number!

Can you write the month of your birth in binary? \qquad
Example: For September, convert 9 to binary.

How about the year, written as a two-digit number, like 09

\qquad
With the cards you have, you can show up to 31 dots, and so make binary numbers up to 31 . (The binary number for 31 is all cards facing up: 11111 .)

Dr. Brown is older than 65 years! To show his age, you need two more cards.
How many dots will be on the one after sixteens? \qquad
How many dots will be on the next one after that? \qquad

Patterns and Relationships in Powers of Two

Starting at the right (ones place) put three cards up and the next two down.
How many dots are showing? \qquad
Turn the next card up. How many dots are on it? \qquad
What is the difference between the two numbers? \qquad
How many total dots do you have now? \qquad
Turn the last card up. How many dots are on it? \qquad
What can you say about the dots on any card and the total number of dots on the cards to the right of it? \qquad
Copyright © 2017 by Bob Brown, Kennesaw State University
Creative Commons Attribution - Share-Alike License http://ksuweb.kennesaw.edu/faculty/rbrow211/

