Solving Logic Problems The Math of True and False Kat's Cat Checker

Professor Bob Brown – Kennesaw State University Bob.Brown@Kennesaw.edu

Variables

Variables are names for things that hold values, just like in coding. Boolean variables can only have two values, TRUE or FALSE. Sometimes we use 1 for TRUE and 0 for FALSE. They are the same.

Boolean functions

AND • Both variables must be true.

Fruit	Cereal	Fruit • Cereal
F	F	F
F	т	F
Т	F	F
Т	Т	Т

When there are two variables, there will be four rows, one for each possible combination of TRUE and FALSE: FF, FT, TF, and TT. When there is only one variable, there are two rows, one for FALSE and one for TRUE.

|--|

Cake	Ice Cream	Happy?
F	F	F
F	Т	Т
Т	F	Т
Т	Т	Т

NOT The result is the opposite.

Zucchini	Zucchini
F	т
Т	F

There are other Boolean functions. Important ones are EXCLUSIVE OR (XOR), NOT-AND (NAND) and NOT-OR (NOR). You can look them up.

Kat needs a cat

"Any cat, as long as it's black!

"Or, a female cat, neutered, either white or orange, or a male cat, neutered, any color but white."

What are the variables? (Remember, 1/0, true/false only)

Exercise

A logician goes into a restaurant and says, "I want a hamburger or a hotdog and French fries." *Assume AND takes precedence over OR; the English "or" is exclusive*

Write the Boolean expression:

Which of the following possibilities will satisfy the logician's request?

a. just a hamburger	e. a hamburger and French fries
b. just a hotdog	f. a hotdog and a hamburger
c. just French fries	g. all three
d. a hotdog and French fries	h. nothing.

What if OR took precedence over AND? (That's why parentheses are important!)

De Morgan's Theorem

Named after Augustus De Morgan. Describes how **not** is used in coding. "Break the line, change the sign."

AND form	OR form
$\overline{\mathbf{A} \bullet \mathbf{B}} = \overline{\mathbf{A}} + \overline{\mathbf{B}}$	$\overline{\mathbf{A} + \mathbf{B}} = \overline{\mathbf{A}} \bullet \overline{\mathbf{B}}$
! (A & & B) = !A !B	! (A B) =!A && !B

College of Computing and Software Engineering https://ccse.kennesaw.edu/outreach/

Copyright © 2018 by Kennesaw State University Creative Commons 4.0 Attribution Non-commercial Share Alike License

