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Abstract
In the optimal commodity tax problem, we show that the Kuhn-Tucker conditions
are neither necessary nor sufficient for optimization. The inadequacy stems from a
curious economic insight: indirect utility functions are quasiconvex in prices. Less
formally, for any two lopsided price vectors with some prices high and some low such
that the consumer fares equally well, the averaged price vector leaves the consumer
worse off. With lopsided prices, the consumer can splurge on the less expensive
goods and conserve on the more expensive goods. This insight is at odds with the
conventional wisdom of splitting taxes across goods to equalize marginal deadweight
losses, supported by the first-order conditions from the optimal tax problem. We show
with an admittedly contrived example that the Ramsey tax formulas derived from
such first-order conditions can actually minimize consumer welfare due to the general
quasiconvexity of indirect utility (always) and linearity of the tax revenue constraint
(our example). Though contrived, the consumer’s preferences in our example satisfy
standard assumptions. Our work suggests a rethinking of optimal taxes is called for to
better accommodate a consumer’s preference for lopsided prices.
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1 Introduction

“I like to pay taxes” is a sentence that you do not hear too often. Rather, people like
to avoid taxes. But if many goods are taxed it is difficult to avoid taxes. Alternatively, if
some goods have high taxes and others low taxes and if consumers CAN effectively avoid
taxes, meeting a tax revenue requirement may be thwarted. Still, if consumers like to avoid
taxes, this boon should be kept in mind when designing tax policy.

How should taxes be spread across goods? This is a famous problem in economics.
Conventional wisdom says to tax goods more if inelastically demanded or supplied, but this
wisdom derives either from Ramsey tax formulas (more later) or from partial equilibrium
analysis only justified under special assumptions about the independence of goods and
demand not having income effects.

We will give an example where the optimal taxes are not spread out evenly
contradicting what the usual (Ramsey) techniques call for. Instead, the optimal taxes call
for taxing only one of the two goods eligible for taxation. (If all goods could be taxed, it is
optimal to tax them all by an equal percentage. The Ramsey tax problem is a second-best
problem.)

2 Notation

Let us specify our notational conventions. Bold faced lowercase letters indicate vectors
and nonbold faced letters indicate one-dimensional variables. This gives x = (x1, . . . , xn) as
a consumption bundle with xi giving the quantity of good i. And p = (p1, . . . , pn) is the
vector of prices with pi the price of good i. A consumer’s income will be denoted as m (for
money). We will use uppercase letters to denote functions. For example, U(x) is a utility
function, or when we need to define some mathematical property of a function we will use
the generic F . We will use V (p,m) for the indirect (maximized) utility function. We will
use capital letters near the beginning of the alphabet to indicate particular values of some
variable, so that pA and mA might denote the price vector and income in scenario A, while
x∗
1A would be the optimal quantity of good 1 in this scenario.

3 Overview of the Ramsey Tax Problem

To focus on the issue at hand—the wrong curvature of the objective function—we
consider the most basic of optimal commodity tax problems, as treated for example in Varian
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(1992) or Dixit (1970). These treatments are variations of Frank Ramsey’s groundbreaking
(1927) paper.1 The essential idea of Ramsey, and the part that we concentrate on, is that the
social planner chooses commodity taxes to maximize a representative individual’s maximized
utility from her choice of goods, the individual taking the prices including taxes as fixed.
That is, there is a maximization problem within a maximization problem. Some treatments
include production; we and Varian (1992) consider only consumption and assume prices
without taxes are fixed (as would be the case if the country was small and engaged in free
trade). As Runge (2020) summarizes, Ramsey’s result says that efficient taxation sets “the
tax for each commodity in relation to price elasticities of supply and demand after accounting
for the income effect, rather than imposing a single tax rate on all [taxable] goods. Although
each of these calibrated taxes creates a small distortion, their granularity avoids the larger
distortion of a blunt single tax.” We should note that Ramsey (1927) justified his approach
for either case of the revenue requirement being infinitesimally small (in which case the
tax problem is not so interesting, right?) or the case in which utility function is pairwise
quadratic with terms involving xi and xj and xixj for each pair goods i and j. Future
treatments ala Varian (1992) and Dixit (1970) assume Ramsey’s general approach without
such limitations.

In a nutshell, there is a social planner and a representative consumer. The
representative consumer chooses her consumption bundle to maximize her utility subject
to her budget constraint, taking prices as given. The social planner will choose taxes and
thereby affect the after-tax prices the consumer faces.

Let us begin with the consumer. Because we will later argue that our example of the
consumer’s preferences are quite commonplace, we will back up all the way to the consumer’s
preferences. A consumption bundle is a vector of n goods in Rn

+. The consumer’s preference
relation ≿ can be used in expressions like xA and xB to indicate that the consumer likes xA

at least as much as xB. Axioms we will always invoke are as given below.

(Complete): For all xA,xB ∈ Rn
+, either xA ≿ xB or xB ≿ xA (or both).

Aside: As is typical, we use ∼ for indifference and xA ∼ xB if xA ≿ xB and xB ≿ xA; we
use ≻ for strict preference and xA ≻ xB if xA ≿ xB but not xB ≿ xA.

(Reflexive): For all xA ∈ Rn
+, we have xA ≿ xA.

1A nice discussion of Ramsey’s three important contributions, including optimal taxation, is given in
Runge (2020) This article also contains some interesting details about his tragically short life of 27 years,
including that his intellect could be compared with Alan Turing, John von Neumann, David Hilbert, and
Ludwig Wittgenstein.
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(Transitive): For all xA,xB,xC ∈ Rn
+, we have xA ≿ xB and xB ≿ xC implies xA ≿ xC .

(Continuous): For any xA ∈ Rn
+, the better than set B(X = {x ∈ Rn

+ : x ≿ xA} and the
worse than set W (X = {x ∈ Rn

+ : xA ≿ x} are closed sets.

Under the above assumptions, such preferences can be represented by a continuous utility
function U : Rn

+ → R such that U(x) gives the consumer’s utility (score) for consumption
bundle x, such that a U(xA) ≥ U(xB) if and only if xA ≿ xB.2 We will sometimes refer to
additional assumptions.

(Strongly Monotonic): If xA,xB ∈ Rn
+ satisfy xiA ≥ xiB for i = 1, 2, . . . , n with at least

one of these inequalities strict, then xA ≻ xB.

(Weakly Monotonic): If xA,xB ∈ Rn
+ satisfy xiA > xiB for i = 1, 2, . . . , n, then xA ≻ xB.

Note that strictly monotonic preferences are always weakly monotonic, but not vice versa.

(Weakly Convex): For any xA,xB,xC ∈ Rn
+ with both xA ≿ xC and xB ≿ xC , we have

txA + (1− t)xB ≿ xC for all t ∈ [0, 1].

(Strictly Convex):For any xA,xB,xC ∈ Rn
+ with xA ̸= xB and with both xA ≿ xC and

xB ≿ xC , we have txA + (1− t)xB ≻ xC for all t ∈ (0, 1).

Strictly convex preferences give C-shaped indifference curves; weak convexity allows for linear
portions along an indifference curves. All strictly convex preferences are weakly convex, but
not vice versa.

We note that Cobb-Douglas preferences given by U(x1, . . . , xn) = xa1
1 xa2

2 · · ·xan
n where the

powers are positive and sum to 1 are merely weakly monotonic and weakly convex, easiest
to see when n = 2. In this case, the x1-axis and x2-axis form the U = 0 indifference curve
and so along the x1-axis the consumer getting more good 1 while holding x2 at 0 maintains
utility of 0 and such an indifference curve has two flat portions—the x1-axis and the x2-axis.
We note this to emphasize that our main example in section 6 will be Stone-Geary which
satisfies the same properties as the canonical Cobb-Douglas.

The representative consumer with income m and utility function U(x), solves
2See Mas-Colell et al. (1995) Proposition 3.C.1 for the proof.
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max
x∈Rn

+

U(x) st p · x = m.

Let x(p,m) be the vector of demand functions.3 The indirect utility function is then
V (p,m) = U

(
x(p,m)

)
. Let λ denote the multiplier used for the budget constraint when

setting up the Lagrangian for the consumer’s utility maximization problem:

L = U(x)− λ
[
p · x−m

]
.

Ramsey and more modern treatments call upon Roy’s Identity (an application of an envelope
theorem) to get

∂V (p,m)

∂pi
= −λxi(p,m). (1)

Aside: λ like the optimal choice of x in the consumer’s utility maximization problem will
depend on prices and income, but nevertheless that dependence is usually suppressed as in
equation (1).

Now we turn to the social planner’s problem. In the simplest version of the problem
that we take up, the government has an exogenous revenue requirement of R dollars and the
economy is a small and open such that there is a fixed price vector p = (p1, . . . , pn). There
is a tax vector t = (t1, . . . , tk, 0, . . . , 0), where the first k < n goods can have a tax but goods
k+1 on are ineligible for taxation. These could be blackmarket goods, for example, or goods
where the transactions costs of collecting the tax is prohibitive (goods sold at flea markets),
or goods where it would be politically unpopular to tax them (insulin or consumer staples
like bread and milk). Overall, the consumer will face after-tax prices of p+ t. We preclude
taxation of all goods because in that special case, the optimum is to tax all goods by the
same percentage sufficiently to meet the revenue requirement (see Dixit, 1970).

The social planner then assumes the representative consumer takes the prices with
taxes as given and maximizes utility. The social planner maximizes the maximized utility of
this representative subject to meeting the exogenous revevue constraint:

max
t∈Rn

+

V (p+ t,m) st
k∑

i=1

tixi(p+ t,m) = R

3See Milgrom and Segal (2002) which alternatively gives a “selection“ if there are multiple solutions to
the optimization problem. The other potential issue is that no solution exists; this is not an issue given we
have a continuous utility function and closed and bounded budget set.
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with corresponding Lagrangian:

L = V (p+ t,m)− µ

[
k∑

i=1

tixi(p+ t,m)−R

]
.

Now it is standard that any saddlepoint of L will involve the optimal choice of taxes, but the
question we address is if that saddlepoint can be found using the Kuhn-Tucker conditions.
We will next argue that the usual curvature on the “indifference curves” is fundamentally
incorrect; we set off indifference curves to note that in the social planner’s problem we will
use indifference curves of the indirect utility function over the p+ t vectors rather than over
consumption bundles when using direct utility functions. To preview our results, we build
an example where the tax revenue constraint is linear, but the indifference curves for indirect
utility have the wrong curvature, so that using the first-order conditions for Kuhn-Tucker
does not find the saddlepoint and indeed guarantees a minimum rather than a maximum in
our example. Before doing that, we next explain the shape of these indifference curves.

4 Quasiconvexity of Indirect Utility in Prices

With preferences over goods, it is common that averages are often preferred to
extremes. For example, a person would want a mix of jazz and rock albums, a mix of
business and casual clothing, or a mix of chicken and steak. It is natural to think that a
person would prefer variety over a multitude of products. However, another valid axiom is
monotonicity of preferences, people always want more: more albums, more clothes, and more
meat is always preferred to less. The lopsided prices allow the consumer to buy more stuff,
even though the stuff may be less diverse. It is an example of a different kind of trade-off
than chicken and steak, consuming more stuff makes up for the now lopsided consumption
bundle, or in other words, the lack of variety.

p1 p2 x∗
1 x∗

2 U

Scenario A 20.00 5.00 2.5 10 5

Scenario B 5.00 20.00 10 2.5 5

Scenario C 12.50 12.50 4 4 4

Table 1: Extreme Price Vectors Preferred to Averages
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Consider a consumer with Cobb-Douglas preferences as represented by utility function
U(x1, x2) = x

1/2
1 x

1/2
2 . It is well-known (and straightforward to derive) that the solution to

such a consumer’s utility maximization problem is always for her to spend half of her money
on good 1 and half on good 2; this example will expedite our illustration that consumers
prefer lopsided prices over even prices. Consider scenario A when this consumer has money
m = $100 to spend when prices are p1A = $5 and p2A = $20. Thus, she does best to
spend $50 on each good or she optimally consumes x⋆

1A = 10 and x⋆
2A = 2.5. The indirect

(maximized) utility function is

V (p1, p2,m) =

[
m

2p1

]1/2[
m

2p2

]1/2

=
m

2(p1p2)1/2

where number in brackets are the demand functions for goods 1 and 2.4

Thus, in scenario A, maximized utility is VA = V (5, 20, 100) = 101/22.51/2 = 5.
Alternatively, consider scenario B with the lopsided prices flip-flopped: p1B = $20 and
p2B = $5, but holding fixed income at m = $100. In this case she does best buying 2.5 units
of good 1 and 10 units of good 2 and obtains indirect utility of VB = 5 again.

Next, consider scenario C, where the consumer still has m = $100, but with prices
averaged over scenarios A and B: p1C = $12.50 and p2C = $12.50. In scenario C she does
best to buy 4 units each of goods 1 and 2 and obtains indirect utility of only 4 utils. This
means that the consumer likes the original lopsided prices of scenarios A or B better than
the evened out prices of scenario C.

This example helps illustrate why this result might be true, especially if we consider
particular pairs of goods. They could be pounds of chicken and pounds of steak; or work
outfits and leisure outfits; or rock and jazz albums. These are quotidian examples. There is
a splurge vs. conserve story. Although we have illustrated this story with examples of goods
that are substitutes and Cobb-Douglas preferences for expediency, this result is very general
and comes about purely because of the consumer’s optimization.

We next formalize and generalize this example to provide a curious but standard
result in microeconomics. We now rehash some usual structure in microeconomics.

Definition: The function F : X → R, where X is some convex set in Rn is quasiconvex if
4We thank Tim Mathews for encouraging expressing V emphasizing the product of prices in the

denominator, which drives the quasiconvexity of V in this example.
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for all λ ∈ (0, 1) and all xA,xB ∈ X with F (xA) ≤ F (xB), we have

F (λxA + [1− λ]xB) ≤ F (xB).

It is immediate that if F is quasiconvex and F (xA) = F (xB), then F (λxA + [1 − λ]xB) ≤
F (xA). An equivalent way of thinking about quasiconvex functions is that worse-than sets
are convex sets, summarized by the following lemma.

Lemma 1. Consider function F : X → R, where X is some convex set in Rn. Then F is
quasiconvex if and only if for all values α ∈ R and all xA,xB ∈ X with F (xA), F (xB) ≤ α

and all λ ∈ (0, 1), we have F (λxA + [1− λ]xB) ≤ α.

Remarks: λxA+[1−λ]xB with 0 < λ < 1 is the convex combination of these two vectors and
by definition a set X is convex if the convex combination of any two points in the set is also
contained in the set; a worse-than set given some function F : X → R and some constant α
can be described as any x ∈ X with F (x) ≤ α.

We next give the standard result that gives the curvature of indirect utility functions
in prices and include the proof—though standard—since so much of our paper depends on
this result.

Lemma 2. The indirect utility function V (p,m) is quasiconvex in the price vector p.

Proof. Select any λ ∈ (0, 1) and any pA,pB ∈ Rn
+ such that V (pA,m) ≤ V (pB,m). Form

the average price vector λpA + (1− λ)pB. The resulting budget sets are:

BSA = {x ∈ Rn
+ : pA · x ≤ m}

BSB = {x ∈ Rn
+ : pB · x ≤ m}

BSC = {x ∈ Rn
+ : pC · x ≤ m}.

We next establish that BSC ⊂ BSA ∪ BSB; or equivalently: if x ∈ BSC , then x ∈ BSA or
x ∈ BSB; or equivalently, the contrapositive: If x /∈ BSA and x /∈ BSB, then x /∈ BSC . To
see this last holds, select x ∈ Rn

+ such that

pA · x > m or λpA · x > λm

pB · x > m or (1− λ)pB · x > (1− λ)m.

Summing then gives pC · x > m so that x /∈ BSC , thereby establishing the contrapositive.
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Let xA,xB, and xC denote the optimal choices under the three scenarios, so that
indirect utility is V (pA,m) = U(xA) and V (pB,m) = U(xB) and V (pC ,m) = U(xC).
Because BSC ⊂ BSA ∪BSB, we have:

xC ∈ BSA =⇒ V (pC ,m) ≤ V (pA,m) ≤ V (pB,m) or

xC ∈ BSB =⇒ V (pC ,m) ≤ V (pB,m).

5 Geometry of Optimal Tax Problem

-
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Figure 1: Quasiconvex Indirect Utility

The punchline of our story is that indirect utility is quasiconvex in prices (or prices
plus taxes) and so indifference curves look like as illustrated in Figure 1. The Cobb-Douglas
example in the previous section gave a numerical illustration of what the geometry shows.
Thus, understanding that a convex combination of two price vectors on the same indifference
curve is in the worse than set gives the usual C-shaped indifference curves. But because prices
are bads (consumers like lower prices), the consumer does better on indifference curves closer
to the origin.

Now what we do not know is the shape of the revenue requirement line

k∑
i=1

tixi(p+ t,m) = R. (2)
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This generally depends on the demand functions. What we do in the next section is to
greatly simplify matters by carefully selecting the utility function so that resulting demand
functions make equation (2) linear. This will then mean that solving for the tangency gives
us a minimum amongst all points on the revenue requirement line, as illustrated below.
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Figure 2: Suboptimal Taxes

6 Stone-Geary Example

6.1 Stone-Geary Utility Max and Demand Functions

Our main example to show the limitations of the Ramsey tax approach is as follows.
Suppose that there are three goods, and only goods 1 and 2 are eligible for taxes. Suppose
for now that goods 1 and 2 are publicly provided private or club goods (i.e., any goods that
are excludable). For instance, the goods could be rides on a ferry, rides on a subway, or some
kind entry price to a national park. It could also be for some kind of government stamp
on a passport. (Our examples are attempts at goods with low marginal cost so that we
may abstract away from such concerns and concentrate on revenue, for now.) Good 3 can
be privately provided but it is not taxable for any number of reasons: transaction costs of
collecting is too high, enforcing the tax is too costly, or any "under the table" payments like
for babysitting.

We usually understand with goods that averages are preferred to extremes, as
formalized with the assumption of strict convexity as given in section 3. A mixture of
steak and chicken during the month is preferred to chicken every night. However, another
valid axiom is monotonicity of preferences: a consumer is better off with more albums, more
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clothes, more meat. What the lopsided prices do is allow the consumer to buy more stuff
even though she ends up with a more lopsided consumption bundle. But just as with any
two goals (here more consumption and averaged consumption), the consumer is willing to
tradeoff between goals: the more consumption allowed by lopsided prices more than makes up
for the resulting uneven consumption bundle, as we showed with the Cobb-Douglas example
in the section 4 and more formally by the quasiconvexity of indirect utility in Lemma 2.

A Stone-Geary function over three goods U : R3
+ → R is defined as follows:

U(x1, x2, x3) =

(x1 − x̄1)
a(x2 − x̄2)

b(x3 − x̄3)
c if x1 ≥ x̄1 and x2 ≥ x̄2 and x3 ≥ x̄3

min{x1 − x̄1, x2 − x̄2, x3 − x̄} otherwise.

where a, b, c ≥ 0, a + b + c = 1 and x̄1, x̄2, x̄3 ≥ 0. The Cobb-Douglas utility functions
are special cases of the Stone-Geary utility functions in which the necessary requirements
x̄1, x̄2, x̄3 are all set to zero. Typically, the Stone-Geary function is only defined when
consumption exceeds the necessary requirements x̄1, x̄2, x̄3 with the otherwise part set equal
to zero, but this would violate weak monotonicity. Thus, we have included the minimum
and this makes the given utility function satisfy preferences that are weakly monotonic and
weakly convex, as well as the other assumptions of complete, reflexive, transitive, continuous.
Indeed, for consumptions bundles (x1, x2, x3) ≫ (x̄1, x̄2, x̄3), where ≫ means each term is
strictly greater, preferences will satisfy the stronger assumptions of strict convexity and strict
monotonicity.

The example we develop is as follows:

U(x1, x2, x3) =

(x1 − 10)0.1(x2 − 10)0.1(x3)
0.8 if x1 ≥ 10 and x2 ≥ 10

min{x1 − 10, x2 − 10} otherwise

M = 2000, R = 408, p1 = p2 = 0, p3 = 1, t1, t2 ≥ 0, t3 = 0.

For expediency, we are (first) making an extreme assumption that goods 1 and 2 are publicly
provided and there is no private price other than the tax: p1 = p2 = 0. The entire price
for good 1 is the tax t1 and the entire price of good 2 is the tax t2. Government Revenue
is a constant amount for simplification purposes, in reality the Government would have
some kind of profit function to cover the upkeep costs for anything provided. However in
this case, we assume that the costs are fixed, this allows us to relax our assumptions later.
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For example, good 1 is rounds of golf at a public golf course and good 2 is rides on the
subway; i.e., goods 1 and 2 are publicly provided private goods. Later, we relax this extreme
assumption and show that our results are qualitatively the same. Currently, however, this
assumption of publicly provided private goods allows an enormous simplification of the tax
revenue constraint, as we will soon show.

Disposable income (after the consumer buys 10 units each of goods 1 and 2) is

2000− 10t1 − 10t2.

It is well known (and straightforward to derive) that the demand functions that result from
Stone-Geary preferences have a simple form, whenever the consumer has enough money to
afford the necessary quantities x̄i’s. For good i, the consumer buys the necessary quantity x̄i

and then spends her disposable income similar to a consumer with Cobb-Douglas preferences.
Here, we get:

x∗
1 = 10 +

0.1(2000− 10t1 − 10t2)

t1

x∗
2 = 10 +

0.1(2000− 10t1 − 10t2)

t2

x∗
3 = 0.8(2000− 10t1 − 10t2)

Thus, the government revenue requirement is

t1x
∗
1 + t2x

∗
2 = 408

⇕

10t1 + 200− t1 − t2 +

10t2 + 200− t1 − t2 = 408

⇕

t1 + t2 = 1.

Using the demand functions given above, the table below shows several examples of
feasible taxes and resulting consumption and utility for the consumer.

The examples in the table clearly illustrate the lopsided taxes allow the consumer to
achieve higher utility. Indeed, because of the simple geometry shown in Figure 2 above, the
even taxes are the worst taxes.

11



t1 t2 x∗
1 x∗

2 x∗
3 U

Scenario A $0.50 $0.50 408 408 1592 1212.51

Scenario B $0.55 $0.45 371.818181 452.222222 1592 1213.73

Scenario C $0.45 $0.55 452.222222 371.818181 1592 1213.73

Scenario D $0.90 $0.10 231.1111 2000 1592 1336.22

Scenario E $0.10 $0.90 2000 231.1111 1592 1336.22

Table 2: Extreme Tax Vectors Preferred to Averages

As an aside, this problem is a bit misbehaved at the boundaries, say if we set t1 = $1

and t2 = $0 since we have some issues with division by zero. Also, with one of the goods
priced at zero the consumer can consume an infinite amount of that good and achieve infinite
utility.

In the following section, we show formally that the Ramsey technique does indeed
pick out the even taxes of $0.50 for each good.

6.2 Ramsey Taxes Are Equal Taxes in Our Example

We next construct the Ramsey tax optimization problem for the Stone-Geary Utility
Function given in the prior subsection. First, we express (and simplify) the indirect utility
function, using the solutions to the consumer choice problem.

V (p1 + t1, p2 + t2, p3,m) = 0.10.20.80.8

[
m− 10(p1 + t1)− 10(p2 + t2)

(p1 + t1)0.1(p2 + t2)0.1p0.83

]
(3)

Note that the numerator in the term in brackets is the disposable income that the consumer
has left after buying the necessary amounts (10 each) of goods 1 and 2. In the prior
subsection, we have already derived the tax constraint simplifies to: t1 + t2 = 1.
Thus, the social planner’s (Ramsey) tax problem is:

max
t1,t2

V (t1, t2, 408) st t1 + t2 = 1

The corresponding Lagrangian is:

L = V (t1, t2, 408) + µ(t1 + t2 − 1)
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Thus, we can see quite clearly that the Kuhn-Tucker conditions expressed in the
Ramsey tax problem become

−λx∗
1 + µ = 0

−λx∗
2 + µ = 0

tx + ty = 1.

where λ is the multiplier from the consumer choice problem (or marginal utility of income)
and where we have used Roy’s Identity (an envelope theorem) as is standard. The first two
of these imply x∗

1 = x∗
2 or

10 + 0.1

[
M − 10t1 − 10t2

t1

]
= 10 + 0.1

[
M − 10t1 − 10t2

t2

]
or simplifying t1 = t2 and thus along with the tax constraint the unique solution to the
Kuhn-Tucker conditions involves t1 = t2 = $0.50.

The reason that this example is so nice is because the geometry of the maximization
is so familiar to the standard consumer choice problem, with one crucial exception. In
particular, the revenue constraint is linear in choice variables, just like the consumer’s budget
constraint. The difference is that under usual assumption of convex preferences the utility
function is quasiconcave, but the indirect utility function is quasiconvex in prices (see Lemma
2): the wrong curvature for the maximization problem.

6.3 Relaxing the Zero Price Assumption

In this section, we consider what happens when the prices of goods 1 and 2 are no
longer both zero. To keep things simple, we still suppose that p1 = p2 and call the price p

and we will maintain that p is still close to zero. For the remainder of the example, we will
maintain income m = $2, 000 and revenue requirement R = $408 and p3 = $1.

In this case, using (3) the indirect utility function is:

V (t1, t2, p) = 0.10.20.80.8

[
m(p)

(p+ t1)0.1(p+ t2)0.1

]
,

where m(t1, t2, p) = 2000− 10(t1 + t2)− 20p is the disposable income.
Logging the indirect utility function (monotonic transformation and no effect on

indifference curves) and using the implicit function theorem gives the slope of indifference
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curves as:

−

[
10

m(t1, t2, p)
+

0.1

p+ t1

]
/

[
10

m(t1, t2, p)
+

0.1

p+ t2

]
and so the slope of any indifference curve is −1 when t2 = t1.

The tax revenue function is:

R(t1, t2, p) = t1

[
10 + 0.1

m(t1, t2, p)

p+ t1

]
+ t2

[
10 + 0.1

m

p+ t2

]

= 10(t1 + t2)︸ ︷︷ ︸
I

+0.1m(t1, t2, p)︸ ︷︷ ︸
II

[
t1

p+ t1
+

t2
p+ t2

]
︸ ︷︷ ︸

III

.

We can find the slope of any iso-tax-revenue curve using the implicit function theorem as:

−

[
10− III + II

p

(p+ t1)2

]
/

[
10− III + II

p

(p+ t2)2

]

which also has a slope of −1 when t1 = t2.
We next sketch an argument to show that the revenue function is quasiconcave in

(t1, t2) for fixed price p for goods 1 and 2 for taxes not too extreme such that II is positive
and 10− III is positive, so that slope of iso-tax-revenue curves are negative in this region.

• Fact 1: For p small, tax revenue is increasing along 45-degree line (t2 = t1).

• Fact 2: I and II only depend on the sum of t1 and t2.

• Fact 3: For any small enough positive taxes s, t and small fixed price p such that
m(s, t, p) is positive, we have R(s, t, p) = R(t, s, p).

• Fact 4: For any p > 0, term III is strictly concave in (t1, t2) (which follows immediately
from negative definite Hessian with zero off-diagonals).

• Fact 5: If we take any weighted average (using weight λ > 0 of tax vectors (s, t) and
(t, s), we have sum of the weighted average tax vector is s+ t.

• Fact 6: If we take any weighted average of tax vectors (s, t) and (t, s) using weight
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λ ∈ (0, 1),we have:

λR(s, t, p) + [1− λ]R(t, s, p) < R(λs+ [1− λ]t, λt+ [1− λ]s, p).

• Fact 7: Iso-tax revenue function is quasiconcave in taxes in this region. The idea is
that if we are considering some utility level α then any tax vector in the better than
region can be gotten as a convex combination of some pair of tax vectors (s, t) and
(t, s) each yielding utility α.

Below we give the figure of when p1 = p2 = $0.01. We solved the revenue constraint
numerically with equal taxes to get t1 = t2 = 0.80627 so that the total price for each of
the two taxed goods including the penny price is 0.81627 and this yields maximized utility
of 1090.37. Alternatively, for s = 0.50 and t = 1.1964331, but for ease of calculation let
us suppose s = 0.50 and t = 1.20. This will give disposable income of $1982.80 which
gives the (near) optimal quantities x1 = 398.78 and x2 = 173.86 and x3 = 1586.21. These
quantities cost the consumer $1999.96 and raise tax revenue of $ we get revenue of 408 and
indirect utility of: 408.02, just overshooting the revenue requirement, but still yielding utility
of 1098.26 doing better for the consumer (and if the consumer spent her last few pennies,
slightly more revenue would be raised and slightly more utility would be obtained). In any
case, the numbers are really meant to show, once again, that the equal taxes found by the
tangency condition (which would result from solving the Kuhn-Tucker conditions from the
optimal tax problem) do not guarantee a solution to the optimal tax problem.

Figure 3: Suboptimal Taxes with Penny Price
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In Figure 3, you will see that the tangency occurs at t1 = t2 ≈ $0.82, with the
indifference curve being inside of the R = $408 iso-tax-revenue curve. Any nearby point on
the iso-tax-revenue curve will be payoff improving, lying below the shown indifference curve,
recalling indirect utility is decreasing in each tax. Now we cannot generally rule out that
additional tangencies of some indifference curve and the iso-tax-revenue curve may occur and
that perhaps one of those (which in this example will involve lopsided taxes) may indeed be
the optimum. However, our example show that a solution to the Kuhn-Tucker conditions
need not be a solution to the optimal tax problem; i.e., because of the curvature issues
in the objective and constraint functions, Kuhn-Tucker conditions are not sufficient for an
optimum. The graph indicates that no tangencies exist other than along the 45-degree line,
but for taxes too lop-sided we are not sure of the properties of the iso-tax-revenue curve.

7 Discussion and Conclusion

Although both of our examples with goods provided by the government or goods
provided privately but with very low prices were rather contrived, we believe they point the
way to better understanding the issues. Even though astronomers knew that other planets
outside our solar system must exist, it took a very long time before they found the first
such planet. Once the first planet was located, it did not take long before hundreds of other
planets were located. Our metaphor is that we have isolated an issue that we always believed
invalidated these techniques and even the usual results about spreading taxes across many
goods; that issue being the quasiconvexity of indirect utility in prices. It is our hope that
now the issue has been identified with this rather contrived pair of examples, more insight
can be developed in future research.

Our problem is linked to some other ideas in economics. The first of which being
price discrimination. With a lopsided tax, price conscious consumers are able to get around
the tax while the richer, less price sensitive absorb the higher taxes, ultimately raising the
revenue needed. Our examples, although contrived, may also pose as a potential proxy for
lopsided taxes effect on consumer’s utility. If used on a large scale, our argument could pose a
problem for the widely accepted point of view that any excise tax or carbon tax would create
too many distortions in the market, when rather a lopsided tax on polluting goods may be
an optimum scenario. Not only optimizing the individual’s utility, but also discouraging
environmentally damaging practices. Taxing goods with negative externalities and creating
a sort of double dividend, by raising government revenue and allowing lower taxes on other
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goods while discouraging consumption of dirty goods that negatively impact health and the
environment. Although some of the literature on the double dividend of pollution taxes
has warned that there additional effects which stunt the utility increases obtainable by such
pollution taxes; for example, see Bovenberg and de Mooij (1994). Our argument augments
the case for taxing dirty goods.

In addition, it is important to address the "fairness" of a lopsided tax. Various
industries and corporations are bound to put up a fight when facing large lopsided taxes.
However, in favor of "fairness" these taxes can be rotated in some way, while the consumer
retains buying power of some products. Again, however, a lopsided tax can be used in
conjunction with taxing dirty or other sinful goods. For example, take the excise tax on
cigarettes: the social planner maximizes individual utility and raises government revenue by
taxing something that is scientifically known to cause serious illness. Although incredibly
simplified, the cigarette tax a good example of a lopsided tax option used to discourage
smoking while also incentivizing better health choices and raising required revenue.

Ultimately, tax research can only take us so far. This paper has allowed us to dig
into a niche portion of tax literature, and has demonstrated to us that we know much less
about taxes than we would like. Maybe the only sensible thing we can say about taxes is
that they should be small (but perhaps not uniformly small!), that only the most important
things should be bought with the government revenue so that not much revenue is required.
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