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Abstract

We study online auctions, where two sellers sequentially choose reserve prices

and then hold ascending auctions. Buyers are able to bid in both auctions and

can switch between them as frequently as they like. In contrast to competition in

traditional auctions, where sellers simultaneously choose reserve prices and each

buyer commits to participating in a single auction, in which an equilibrium exists

only in mixed strategies, we show that the sequential online auction game has

a pure strategy equilibrium. This equilibrium is inefficient because both sellers

choose a reserve price higher than the marginal costs (but still smaller than a

collusive outcome).
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1 Introduction

E-commerce has substantially transformed ordinary retail markets. It has

also influenced the evolution of selling mechanisms and their contextual applications.
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Sealed-bid auctions were prevalent before the advent of the Internet, but have lost

their popularity due to a drastic improvement in the communication technologies and

reduction of search costs for buyers.

One of the important attributes of e-commerce is the ease of trading. Previously,

companies had to incur fixed costs to set up at least one distribution channel. Reselling

those items after the purchase was also problematic due to high search and coordination

costs. These days, any individual may almost costlessly bring a product to an online

consumer-to-consumer (C-2-C) market, whether for the purposes of resale or as a

uniquely crafted item. The latter tendency produces a distinctive environment in which

there may be only a few sellers offering small number of homogeneous goods to a large

pool of buyers.

C-2-C platforms vary not only in their purpose, but also in the selling mechanisms

that are available to sellers. The most popular selling mechanisms are posted prices,

auctions and auctions with a buy-it-now price (eBay also has the “best offer,” which

is effectively a first-price sealed-bid auction). There are several broad online markets

where auctions are dominating as selling mechanisms, e.g., eBid, AuctionZip or

LiveAuctioneers. Other platforms are more targeted. For example, Propertyroom helps

law enforcement agencies to auction off seized, stolen, abandoned and surplus items,

which is required by law. Shopgoodwill receives all of its goods (mostly clothing and

household items) from donations and then auctions them off to the public. It further

uses resulting profits to provide job training in the USA. Listia does not use money at

all, but gives credits to consumers for donating items, which later could be used to bid

at the website.

The largest online C-2-C market is hosted by eBay, but because sellers can list

their items using several mechanisms on this platform, in addition to more complicated

behavior by buyers that are faced with the same objects being sold using different

mechanisms, the choice of the mechanism itself may be endogenous. Hence, the analysis

in this note is focused on auction-only online markets like the platforms described above.

The sparse theoretical and empirical literature on competing online auctions

investigates the behavior of buyers or final purchase prices. We, on the other hand,

are mainly interested in how competing sellers choose their reserve prices. We show that

even with the same marginal costs, the first-arriving seller chooses a reserve price just
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low enough to safeguard against being undercut by the second seller, and in equilibrium

the first-arriving seller makes more profit than the second-arriving seller. In addition to

characterizing an equilibrium in the above environment, this note has a methodological

contribution. We show how the approach of Myerson (1981) can be extended to a case

with two sellers receiving some split of the expected revenue generated from the buyers.

Peters and Severinov (2006) prove that when there are many sellers and buyers in

online-auction markets, the reserve prices set by the sellers are equal to their marginal

costs. In contrast to sealed-bid auctions characterized by simultaneous choice of reserve

prices, it is unlikely that in online markets sellers choose reserve prices simultaneously.

Rather, a seller who comes to the market first, chooses a reserve price expecting a

subsequent arrival of another seller. In principle, sellers may have a good estimate of

how many competitors to anticipate. Such a strategic environment may be framed as a

Stackelberg-like model where sellers choose reserve prices, and our results are consistent

with the standard symmetric Stackelberg model, in which the first-moving seller has an

advantage and earns a higher profit.

Our note is related to Burguet and Sákovics (1999), who show that the results

of McAfee (1993) and Peters and Severinov (1997) hold only for large markets where

many sellers offer sealed-bid auctions. The crucial feature of the environment considered

by this literature is the commitment of buyers, who could no longer switch to another

auction after placing a bid in one of them. Burguet and Sákovics (1999) argue that in a

duopoly the reserve prices are no longer driven to marginal costs. The authors consider

simultaneous choice of reserve prices by the sellers and find that the equilibrium exists

only in mixed strategies. When the choice of reserve prices is sequential (which reflects

the observed regularities of online markets), we show that there is a unique equilibrium

outcome. Due to differences in the behavior of buyers faced with either sealed-bid or

ascending auctions, Burguet and Sákovics (1999) could not use the marginal revenue

approach (Myerson (1981), Bulow and Roberts (1989), Bulow and Klemperer (1994)),

which is applicable in our analysis and allows us to tremendously simplify calculations

further generalize our results to any selling mechanisms in which only the highest valued

buyers are awarded units.

We show that just like in the environment considered by Burguet and Sákovics

(1999), competition between two sellers competing in online auctions is not enough to
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drive reserve prices to marginal costs. To our knowledge, there is no empirical literature

examining the structure of reserve prices in online auction markets. Our theory predicts

variation to exist even with two sellers. This contrasts with a monopolist who sells

items by auctions at the same optimal reserve price and a competitive market in which

reserve prices are equal to marginal costs. The monopolist outcome may also arise if

competing duopolists were to collude. Hence, the absence of variation in the reserve

prices on particular segments of C-2-C markets could potentially be used as a test for

collusion.

In the next section we describe the model. In section 3 we describe the sellers’

profits directly and then adapt the revenue equivalence theorem to rewrite the sellers’

profits. In section 4 we describe the equilibrium. Section 5 provides an example with

three buyers with uniformly distributed values and shows how the reserve price of the

first-moving seller is just high enough to discourage the second-arriving seller from

undercutting. We conclude in section 6 by considering online auctions (in which buyers

can bid simultaneously in both auctions), but in which the sellers choose reserve prices

simultaneously to better understand the role of sequentially chosen reserve prices.

2 The model

There are two sellers with identical costs (normalized to zero) — a and b — each

possessing a single unit. There are n buyers, each demanding a single unit. The values of

the buyers are i.i.d, drawn from distribution F (·) with support [0, v]; F (·) is differentiable
with everywhere positive density f(·). Let the vector of valuations be v = (v1, v2, . . . , vn)

and the vector of sorted values be x = (x1, x2, . . . , xn) with x1 ≥ x2 ≥ . . . ≥ xn. In other

words, the elements of x are order statistics. Let fk(x) denote the marginal density

function of the kth highest order statistic and let f (n)
1:k (x1, x2, . . . , xk) denote the joint

density of the kth highest order statistics. All players are risk-neutral. A seller’s ex post

profit is equal to the payment he receives. A buyer’s ex post payoff equals his value if

he wins a unit, less any payment he makes.

Our model covers one story exactly and another story approximately. The exact

story has a centralized auction taking place at some specified date. Prior to this date,

seller a arrives and selects reserve price ra and then seller b arrives, observes ra, and
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selects reserve price rb. Each buyer submits a sealed bid. The allocation is according

to the seller-offer double auction, which works as follows. Make a single list, sorting the

reserve prices and bids from highest to lowest, with ties ordered randomly. Set price

P equal to the reserve price or bid in the nth lowest position on this list. All sellers

amongst the nth lowest positions will sell a unit and receive P dollars; all buyers with

values in the remaining 2 “highest” positions will purchase a unit and pay P dollars.

The remaining sellers and buyers do not transact. This means that the price paid by

each winning buyer is set by either a losing buyer or a seller, but not his own bid. Thus,

every buyer has a dominant strategy to bid his value so that he wins a unit if and only

if profitable to do so. But a seller can both sell a unit and set the price, distorting his

incentive to set a reserve at his cost (here zero).

The approximate story is that the selling procedure is decentralized. Sellers arrive

sequentially and set reserve prices as before, but this time each seller activates a separate

ascending price auction. Once all of the reserve prices are chosen, the auctions begin and

buyers can bid in any of the auctions. The auctions end when some period of time passes

with no further bids. Peters and Severinov (2006) have treated a similar environment in

which sellers choose reserve prices simultaneously and have independent private costs.

They further assumed a finite grid of allowable prices in the auctions coinciding with

the supports that the sellers and buyers draw their costs and values from. A key result

in Peters and Severinov (2006) is that there exists a perfect Bayesian equilibrium in the

bidding game, in which each buyer bids minimally as needed, only bidding in the auction

with the lowest price whenever that buyer is not already the highest bidder in one of

the auctions and that the lowest price is less than his value. Such a strategy could be

implemented by a computerized algorithm or machine proxy. If all buyers used it and if

the bid increments became finer and finer, the selling procedure would be strategically

and outcome equivalent to the seller-offer double auction described above, in the same

way that Vickrey (1961) found strategic equivalence between a single-unit second-price

auction and an ascending price auction in a private-values setting.
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3 Sellers’ profits

In the seller-offer double auction or in decentralized ascending price auctions,

only the buyers with the highest valuations win units, as described in the prior section.

We next give seller profit functions based on whether the seller has the lower or higher

reserve price. Name the reserve prices such that r2 ≥ r1. We first treat the case when

r2 > r1. The seller with reserve price r2 sells a unit at price r2 if x1 ≥ x2 ≥ r2 > x3 and

at price x3 if x1 ≥ x2 ≥ x3 ≥ r2 for expected profit of:

π2(r2) =

∫ x3=r2

x3=0

∫ x2=v

x2=r2

∫ x1=v

x1=x2

r2f
(n)
1:3 (x1, x2, x3)dx1dx2dx3 +∫ x3=v

x3=r2

∫ x2=v

x2=x3

∫ x1=v

x1=x2

x3f
(n)
1:3 (x1, x2, x3)dx1dx2dx3.

(1)

The seller with reserve price r1 sells a unit at price r2 if x1 ≥ x2 ≥ r2 > x3 and at price

x3 if x1 ≥ x2 ≥ x3 ≥ r2 as before, and also at price r1 if x1 ≥ r1 > x2 and at price x2 if

r2 ≥ x2 ≥ r1 for the expected profit of:

π1(r1, r2) = π2(r2) +

∫ x2=r1

x2=0

∫ x1=v

x1=r1

r1f
(n)
1:2 (x1, x2)dx1dx2 +∫ x2=r2

x2=r1

∫ x1=v

x1=x2

x2f
(n)
1:2 (x1, x2)dx1dx2.

(2)

Despite the particulars of the payments, the revenue equivalence theorem

(Myerson (1981), Riley and Samuelson (1981), Krishna (2009)) indicates that what

matters is the allocation of units: in a single-unit demand independent private values

setting (as in our model), in any incentive compatible mechanism in which a buyer

with value 0 gets an expected payoff of 0, the expected revenue equals the expected

marginal revenue of the buyers awarded units, where marginal revenue is defined as

MR(z) := z − 1−F (z)
f(z)

. We may thus express the profit functions as summarized in the

following proposition.
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Proposition 1. An equivalent way to express the profit functions is:

π2(r2) =
1

2

∫ x2=v

x2=r2

∫ x1=v

x1=x2

(
MR(x1) +MR(x2)

)
f
(n)
1:2 (x1, x2)dx1dx2

and

π1(r1, r2) = π2(r2) +

∫ x2=r1

x2=0

∫ x1=v

x1=r1

MR(x1)f
(n)
1:2 (x1, x2)dx1dx2 +∫ x2=r2

x2=r1

∫ x1=v

x1=x2

MR(x1)f
(n)
1:2 (x1, x2)dx1dx2.

Proof. In the seller-offer double auction, buyers have a dominant strategy to bid

their values, so that a unit is sold to each of the two highest order statistics whenever

x2 ≥ r2 and a unit is sold to only the highest order statistic when x1 ≥ r1 > x2

or r2 > x2 ≥ r1. The aforementioned revenue equivalence theorem applies and gives

π1(r1, r2) + π2(r2) as specified in this proposition for the aggregate expected revenue

generated from the buyers. The split of revenue as designated also results from the

revenue equivalence theorem. To see this, construct as follows a dominant strategy direct

revelation game in which buyers report their values that ex post replicates the payment

received in the seller-offer double auction by the seller with the higher reserve price.

Each buyer is awarded a 1/2 unit if and only if his report exceeds a price determined by

the reports of his opponents and r2. He also pays 1/2 of this price whenever so awarded.

This price is infinity if the maximum of the other buyers’ reports is below r2; is r2 if the

maximum of the other reports is above r2, but the remaining reports are below r2; is

the second highest of the other reports when this value exceeds r2.

For the case when r2 = r1 ≡ r, each seller gets expected profit

π0(r) =
1

2
π1(r, r) +

1

2
π2(r).

since the order of their reserve prices in the list used in the seller-offer double auction

is random (or in the ascending auctions if only one buyer has a value exceeding this

reserve price, he would randomly choose which auction to place his bid).

We maintain the following standard assumption throughout our paper (see

Myerson (1981)).
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Assumption 1. The marginal revenue function MR(z) := z − 1−F (z)
f(z)

is regular:

that is, it is continuous and strictly increasing.

We will also make use of the following quick result introduced in Bulow and

Roberts (1989), which can be shown using integration by parts:

Lemma 1. For all p with 0 ≤ p ≤ v, we have:∫ v

p

MR(z)f(z)dz = p[1− F (p)].

The next three lemmas establish important properties of the profit functions.

Lemma 2. For all (r1, r2) with 0 < r1 ≤ r2 < v, we have:

π1(r1, r2) > π2(r2).

Proof. This follows immediately from equations (1) and (2).

Lemma 3. For all r with 0 < r < v, we have:

π1(r, r) > π0(r).

Proof. By Lemma 2, π1(r, r) > π2(r). By definition, π0 is a convex combination

of π1(r, r) and π2(r) and thus lies somewhere in between: π1(r, r) > π0(r) > π2(r).

Lemma 4. The function π2(·) defined on [0, v] is single-peaked, and reaches

its peak at r∗2 := ψ−1(0), where ψ(r2) := r2 + MR(r2). Each function in the family

{π1(·, r2)}r2∈[0,v], with π1(·, r2) defined on [0, r2], is single-peaked and reaches its peak at

min{r∗1, r2}, where r∗1 :=MR−1(0).

Proof. Use Proposition 1 to get:

dπ2(r2)

dr2
= −1

2

∫ x1=v

x1=r2

(
MR(x1) +MR(r2)

)
n(n− 1)f(x1)f(r2)F

n−2(r2)dx1

= −1

2
n(n− 1)f(r2)F

n−2(r2)

[
(1− F (r2))r2 +MR(r2)(1− F (r2))

]
= −1

2
n(n− 1)f(r2)F

n−2(r2)(1− F (r2))︸ ︷︷ ︸
f2(r2) ≥ 0

(r2 +MR(r2))

where Lemma 1 gives the second equality. This derivative equals 0 when r2 is 0 or v,

8



but otherwise takes sign opposite of ψ(r2) := r2 +MR(r2). Because ψ(0) < 0 < ψ(v)

and ψ(r2) is continuous and strictly increasing by Assumption 1 (regularity), there is

a unique value of r2 in the interior of [0, v] with ψ(r2) = 0: r∗2 = ψ−1(0). Thus, in

the interior of [0, v], dπ2(r2)/dr2 begins positive, equals zero at r∗2, and turns negative,

thereby giving the single-peakedness of π2(r2).

Next, use Proposition 1 to get:

∂π1(r1, r2)

∂r1
= −

∫ x2=r1

x2=0

MR(r1)n(n− 1)f(r1)f(x2)F
n−2(x2)dx2

= −MR(r1)nf(r1)

∫ x2=r1

x2=0

(n− 1)f(x2)F
n−2(x2)dx2

= −nf(r1)F n−1(r1)︸ ︷︷ ︸
f1(r1) ≥ 0

MR(r1).

A similar argument to the prior paragraph gives the single-peakedness of π1(r1, r2) at

r∗1 =MR−1(0) whenever r∗1 ≤ r2 and otherwise at r2, noting that π1(·, r2) is only defined

on [0, r2].

Lemma 5. The following ranking holds: 0 < r∗2 < r∗1.

Proof. The function ψ(r2) = r2 +MR(r2) is strictly increasing and continuous

by Assumption 1. By definition, MR(r∗1) = 0 and ψ(r∗2) = 0. The result follows from

ψ(0) =MR(0) = −1/f(0) < 0 and ψ(r∗1) = r∗1 +MR(r∗1) = r∗1 > 0.

4 Equilibrium

With the profit functions of the sellers thus defined, we are now ready to

investigate the equilibria. We consider only the sequential game between the sellers:

buyers are presumed to behave as already described. The game begins with the null

history. A pure strategy for seller a is to choose a reserve price ra from [0, v]. A

mixed strategy is a probability distribution on [0, v]. Each ra from [0, v] gives rise

to a different history. Seller b’s pure strategy is a function rb (ra) which states a price rb
in [0, v] upon observing seller a’s reserve price ra. A mixed strategy involves selecting a

probability distribution over [0, v] for each ra in [0, v]. We only emphasize histories here

to more compactly define our equilibrium concept. A subgame perfect equilibrium gives
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a strategy for each player, such that after every history, the payoff to a player whose

move it is cannot be improved by this player unilaterally deviating to another strategy.

Consider the value r1 such that π1 (r1, r1) = π2 (r
∗
2). Note that π1 (r∗2, r∗2) > π2 (r

∗
2)

by Lemma 2 and π1 (0, 0) = π2 (0) < π2 (r
∗
2) by Lemma 4. Note also that π1 (r, r) is

strictly increasing in r for all r ∈ [0, r∗2]. This follows because for 0 ≤ r < s ≤ r∗2, we

have π1 (r, r) < π1 (r, s) < π1 (s, s), where the first inequality comes from equation (2),

and the fact that π2 (r) < π2 (s) comes from the single-peakedness result of Lemma 4,

which also justifies the last inequality. The intermediate value theorem then implies that

0 < r1 < r∗2.

Proposition 2. No subgame perfect equilibrium exists.

Proof. Consider the subgame that begins after seller a chooses some price ra ∈
(r1, r

∗
2). If seller b prices higher than ra, then he does best with r∗2 by Lemma 4. For

ε > 0 small enough, pricing ra − ε is even better for the second-moving seller because

π1 (ra − ε, ra) ≈ π1 (ra, ra) > π1 (r1, r1) = π2 (r
∗
2), recalling from the previous paragraph

that π1 (r, r) is strictly increasing in this region. Pricing exactly ra is worse for the

second-moving seller than pricing ra − ε for small enough ε > 0 by Lemma 3. Because

π1 (ra − ε, ra) is increasing as ε > 0 goes to zero (by Lemma 4) and because there is no

smallest ε > 0, no best response exists for the second-moving seller.

No subgame perfect equilibrium exists because of the technicality shown in the

above proof: the second-moving seller wants to price just below ra but there is no price

just below ra. Thus, we adapt from Radner (1980) the ε-perfect equilibrium to our

game: this equilibrium specifies a strategy for each player, such that after every history,

the payoff to a player whose move it is cannot be improved by more than ε by this player

unilaterally deviating to another strategy. That is, each player’s strategy is an ε-best

response to the strategies designated for the other players. For ε = ∞, any strategy

profile forms an ε-perfect equilibrium, but taking ε sufficiently small rules out some

strategy profiles as being equilibria.

Proposition 3. There is a unique ε-perfect equilibrium outcome as ε goes to

zero: the first seller prices r1 and the second seller prices r∗2.

Proof. The proof is by backward induction. Suppose seller a has chosen reserve
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price ra. We examine the best response of seller b. If ra = v, seller b has a unique best

response to price r∗1, using Lemma 4 and noting that choosing reserve price v results in

zero profit. If ra = 0, observe that

π0(0) =
1

2
π1(0, 0) +

1

2
π2(0) = π2(0) < π2(r

∗
2)

where the inequality is from Lemma 4. Thus, choosing reserve price r∗2 is better than

matching with a reserve price of 0, and is therefore the unique best response. For the

remaining cases of ra, we may appeal to Lemma 3 to note that matching this reserve

price is never a best response for seller b. From Lemma 4 it follows that seller b does

best whenever he chooses a lower reserve price to get as close as possible to r∗1 and does

best whenever he chooses a higher reserve price to get as close as possible to r∗2.

Case 1 : r∗1 < ra < v. Seller b can achieve π1(r∗1, ra) by pricing below ra. Pricing

above ra yields less than π2(ra). Because π1(r∗1, ra) > π1(ra, ra) > π2(ra), choosing

reserve r∗1 is seller b’s unique best response.

Case 2 : r∗2 ≤ ra ≤ r∗1. Seller b gets less than π2(ra) by pricing above ra and

gets arbitrarily close to π1(ra, ra) by pricing just below ra. Because π1(ra, ra) > π2(ra),

pricing just below ra is the unique ε-best response.

Case 3 : r1 < ra < r∗2. From the proof to Proposition 2, pricing just below ra is

the unique ε-best response for seller b.

Case 4 : 0 < ra ≤ r1. Recall that r1 is defined such that π1 (r1, r1) = π2 (r
∗
2).

For all rb < r1 we have π1(rb, ra) ≤ π1(rb, r1) < π1 (r1, r1) = π2 (r
∗
2) where the strict

inequality is by Lemma 4, the weak inequality comes from equation (2) and the fact

that π2 (ra) < π2 (r1) is established by Lemma 4. Thus seller b has a unique best

response to price r∗2.

Armed with the best response of seller b, back up to the decision of seller a. If

seller a sets any reserve price ra > r1, then seller b will choose some lower price as

described above. Thus, seller a will be the high-priced seller and earn at most π2(r∗2).

Alternatively, if seller a sets any reserve price ra ≤ r1, then seller b will choose price r∗2.

Hence, seller a will earn π1(ra, r∗2). By Lemma 4, he will get the most in this region by

setting ra = r1. By Lemma 2, π1(r1, r∗2) > π2(r
∗
2), which produces the desired result.
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Proposition 3 shows that reserve prices are not driven down to the sellers’

marginal costs, resulting in inefficiency. In addition, seller a who moves first sets a

lower price and earns a higher profit than seller b since π1(r1, r∗2) > π2(r
∗
2) by Lemma

2. As a remark, it follows from the aforementioned revenue equivalence theorem that

if sellers were to collude to maximize their joint profits, they would set both reserve

prices at MR−1(0) = r∗1 > r∗2. Thus, in a non-cooperative game with sellers moving

sequentially, the equilibrium results in more social surplus (including the buyers) than

in a monopolized or cartelized market.

5 Numerical example

Suppose that there are n = 3 buyers, with values distributed (uniformly) on [0, 1].

Then, F (v) = v, f(v) = 1, and marginal revenue is MR(z) = 2z− 1. Using Proposition

1, the profit functions for sellers with the higher and lower reserve prices are:

π2(r2) =
1

2

∫ x2=1

x2=r2

∫ x1=1

x1=x2

(2x1 − 1 + 2x2 − 1)6x2dx1dx2 =
9

4
r42 − 4r32 +

3

2
r22 +

1

4

and

π1(r1, r2) = π2(r2) +

∫ x2=r1

x2=0

∫ x1=1

x1=r1

(2x1 − 1)6x2dx1dx2 +∫ x2=r2

x2=r1

∫ x1=1

x1=x2

(2x1 − 1)6x2dx1dx2 = −
3

2
r41 + r31 +

3

4
r42 − 2r32 +

3

2
r22 +

1

4

noting that the joint density of the two highest order statistics is f (3)
1:2 = 6x2.

We obtain r∗2 = 1/3 ≈ 0.333 by solving r2 +MR(r2) = 0 or r2 + 2r2 − 1 = 0.

This is the value of r2 that maximizes π2(r2) and can be alternatively found by solving

dπ2(r2)/dr2 = 0. This gives π2(r∗2) = 8/27 ≈ 0.296. In equilibrium, seller a prices r1 such

that π1(r1, r1) = π2(r
∗
2), or r1 ≈ 0.190. This makes seller b just prefer to price r∗2 rather

than undercut r1 by ε. Thus, in equilibrium seller a obtains profit π1(r1, r∗2) ≈ 0.357

and seller b obtains profit π2(r∗2) ≈ 0.296. The profit functions and equilibrium prices

are illustrated on Figure 1.
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6 Conclusion

In this note we analyzed imperfect competition in online markets where two

sellers enter the market sequentially and list their items by ascending auctions. We

showed that the equilibrium outcome is unique with the first-arriving seller setting a

low reserve price, and the second seller setting a higher reserve price. The first-moving

seller receives larger expected profit, which is consistent with the first-mover advantage

of the Stackelberg model. The equilibrium outcome is inefficient, because both reserve

prices are set higher than the sellers’ marginal costs.

Two more factors drive the results. The first one is the ability of buyers to switch

costlessly between auctions, which is a likely feature of online markets. In the extreme

case, buyers may procure bots scanning for desired goods across different digital auction

platforms and bidding on their behalf. This behavior leads to well-structured profit

functions for the sellers. The second factor is that sellers have identical costs. Many

sellers in online consumer-to-consumer markets are reselling previously bought items, so

one would not expect significant variability in the costs of sellers.

To conclude, we briefly consider the case of online auctions but where the two

sellers simultaneously choose their prices. This case differs only from Burguet and

Sákovics (1999) in the assumption that buyers can freely buy from either seller rather

than commit to one seller’s auction or the other’s. It is straightforward to show using

our profit functions (and similar to our proof of Lemma 2) that no pure strategy Nash

equilibrium exists. Furthermore, it can be shown that the support of any mixed strategy

equilibrium must be identical but cannot include zero, the same result as Burguet and

Sákovics (1999) obtain when buyers commit to one auction or the other. Further, using

a standard argument, the support of prices that a seller mixes over in any mixed strategy

equilibrium must not contain any gaps or atoms. It can be shown that the supremum of

the support of each seller’s mixed strategy equals r∗2 — the price the second-moving seller

chooses in the equilibrium in the version of the game when sellers choose reserve prices

sequentially. If it were lower, then any seller pricing near enough this supremum would

be the high priced seller with probability near enough one that it would be profitable

to deviate to r∗2. Because sellers must be indifferent between any prices that they mix

over, this means that in a mixed strategy equilibrium each seller must earn (arbitrarily
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close to) π2(r∗2), as choosing a price nearly r∗2 would result in the highest price with

probability nearly one. It follows given our earlier work in this paper, that each seller

would then have an incentive for some strategic move in which he commits to a reserve

price prior to the other seller, thereby making the assumption of simultaneous choice of

reserve prices fragile.

Figure 1: Equilibrium in reserve prices (points A and B) when n = 3 and vi ∼ U [0, 1].
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