
June 2020

Title:

Author(s):

Policy Report

"Is Mandatory Mass Testing for 
COVID-19 a Poor Policy?"

Alexander Maslov, Assistant 
Professor of Economics & Bagwell 
Center Affiliated Faculty



Is Mandatory Mass Testing for COVID-19 a Poor
Policy?

Alexander Maslov∗

June 15, 2020

Abstract

In this note I describe simple logic behind COVID-19 mass testing, which ex-

plains why any underlying policy is economically unsubstantiated. The application

of basic probability theory shows that unless the testing accuracy is close to a

hundred percent, even a small number of false positives introduces significant bias

into random tests making them extremely unreliable.
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1 Introduction

This note is motivated by recent proliferation of debates in many countries
concerning the implementation of mandatory mass testing for COVID-19, which would
be administered by the governments and effectively financed by taxpayers’ monies. In a
more lenient agenda, it is at least supposed that private and state enterprises would be
compelled to perform mass testing of their employees. In this note I turn to the basic
logic of medical testing and argue the futility of such policies. When the infection rate is
low, for a random person not exhibiting any symptoms of the disease or having engaged
in close contact with infected people, the predictive power of the test even with 99%
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accuracy is still far below this number and cannot justify the underlying epiphenomenon
costs.

One of the reasons why this apparently intuitive calculation usually remains
under the shroud of ignorance is our own biology. The human brain has evolved to
solve extraordinary complex tasks, which has bolstered the advancement of civilizations.
However, as shown by numerous studies (De Martino et al. (2006), Bechara and Damasio
(2005), Thaler and Ganser (2015) to name a few), despite its triumph in the realm of
logic, the human brain is subject to numerous biases and pitfalls. Some are due to
the neural link between the limbic system and the cortex (e.g. Floresco et al. (2008)),
others stem from the specificity of wiring evolved as a byproduct of social exchange (e.g.
Cosmides (1989)). The latter is a salient example of how human brains are not always
capable of comprehending randomness and probabilities out of social context.

Interestingly, even people with specialized knowledge are not exempt from making
those biases. For example, half a century ago, Casscells et al. (1978) surveyed residents
of a prominent medical school asking the respondents the following question:

“If a test to detect a disease whose prevalence is one in a thousand has a false
positive rate of 5 percent, what is the chance that a person found to have a positive result
actually has the disease, assuming you know nothing about the person’s symptoms or
signs.”

Almost half of the respondents answered 95% percent, and only 18% of the
surveyed respondents answered correctly: 1.96%. The problem may be trivial after
juxtaposing the numbers of false positives and true positives: for each 51 people out of a
thousand who test positive (50 false positives as 5% from 999 and 1 true positive), only
one will actually have the disease. However, our brains did not evolve to tackle such
tasks, and that is why many people fail at this seemingly simple problem.

Of course, a more formal way to approach this question is by using Bayes’
Theorem (Joyce (2003)), because conditioning on the positive test provides an additional
piece of information and reduces the final sample space. In addition, its application also
allows us to account for false negatives, which is an inescapable bane of medical testing.

Attesting to the results of this survey, Bennett (2009) notes that false positives
are not human or lab errors, but rather a consequence of making tests sensitive to
different deviations from a physiological norm. Reducing the false positive rate (FPR)
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inevitably leads to an increase in false negatives. For any disease testing, the latter is
more hazardous than the former, which prompts the designers to compromise on a larger
number of false positives rather than false negatives.

As shown by different studies (e.g. Xiao et al. (2020), West et al. (2020) and
Winichakoon et al. (2020)), current COVID-19 tests produce a substantial number of
false negatives, which is an important problem from an epidemiological standpoint.
However, much less attention is given to false positives, which may not be as crucial from
a public health perspective, but are central to economic policies. This note addresses
the viability of the latter.

2 Methodology

The accuracy of testing is directly linked to the number of false positives and false
negatives which contaminate the sample. The former are described by the specificity
of the test, and the latter by its sensitivity (Lalkhen and McCluskey (2008)). At this
point, an efficient ubiquitous COVID-19 test simply does not exist. Different versions
of the test offer various compromises between sensitivity and specificity.1 On average,
there seem to be around 5 − 10% of false positives, so we will take 5% as our baseline
case gradually decreasing it to 1%. To simplify things, let us also assume that the false
negative rate (FNR) is 0. It is easy to see that the increase in FNR would negatively
affect the conditional probability of testing positive for a person with the disease. Hence,
with small values for FPR and FNR we would expect the tests to be quite reliable.

Consider a random person in the population who had no direct contact with
infected people nor shows any symptoms of the disease. Let P (S) be his prior probability
of having COVID-19. Then P (H) = 1−P (S) is the probability of not having the disease.
If FNR = 0, then the test always provides true positives. Hence, the conditional
probability of the sick person to test positive is P (P |S) = 1. On the other hand, if
FPR = 5%, the conditional probability of testing positive when a person does not have
the disease is P (P |H) = 0.05.

There are essentially two ways, in which this person could have tested positive. He
either had COVID-19, and the test showed it correctly (true positive), i.e. P (S ∩ P ) =

1The Foundation for Innovative New Diagnostics (FIND) provides comparisons of some of the tests
on their official website: https://www.finddx.org.
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P (S)P (P |S), or he did not have the disease, and tested positive (false positive), i.e.
P (H ∩ P ) = P (H)P (P |H). The marginal probability that he tested positive is the
union of two independent events: P (P ) = P (S ∩ P ) + P (H ∩ P ). Then, after testing
positive, the following inverse probability defines how likely it is that he tested positive
due to having the disease:

P (S|P ) =
P (S ∩ P )

P (P )
=

P (S)P (P |S)
P (S)P (P |S) + P (H)P (P |H)

(1)

Notice that P (S|P ) is increasing in P (S ∩ P ), because the latter term is
simultaneously in the numerator and the denominator. Since P (S∩P ) decreases with an
increase in FNR, the whole posterior probability also decreases. The above equation is
Bayes’ Theorem, which effectively relates the probability of following one of the paths to
the constrained sample space defined only by the paths that could lead to the observed
outcome. In our context it shows the likelihood of having tested positive due to actually
having the disease rather than being a false positive observation.

3 Results

To compute (1) we only need to know the prior unconditional probability that
a randomly chosen person without symptoms or previous direct contact with infected
people has COVID-19. We can put a bound on these numbers from publicly available
information. As of June 03, 2020, in the USA, there was an average of 5, 718 confirmed
cases per one million people. Hence, the probability that a randomly chosen person
has the disease is P (S) = 5,718

1,000,000
≈ 0.57%.2 Correspondingly, the probability of not

having the disease is P (H) = 1 − P (S) = 99.43%. Because we already know P (P |S)
and P (P |H), it is straightforward to calculate the likelihood of that person being sick
if he tested positive:

P (S|P ) =
0.0057

0.0057 + 0.9943× 0.05
= 10.32%

That is, if a person living in the USA had no reason to suspect having COVID-19
and were randomly tested, and the results of the test came back positive (under the

2Note that this probability is based only on the confirmed cases, while in reality the infection rate
may be higher.
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assumed probabilities), the likelihood of actually having COVID-19 after testing positive
is only 10.32%. The above number tells us that even if the test has high specificity (5%
of false positives), it does not produce accurate results when the infection rate is very
small, which is the case for all countries in the world. Even within almost laboratory
conditions characterized by FPR = 1% and FNR = 0, the resulting probability rises
only to 36.51%. It effectively renders the test useless for a person who does not have
any symptoms and did not have direct contact with infected people. The probability
further decreases if the test is also prone to false negatives. For example, assuming
FNR = 10%, the conditional probability of testing positive while having COVID-19 is
now less than 1, which further decreases the examined inverse probabilities:

P (S|P ) =
0.0057× 0.9

0.0057× 0.9 + 0.9943× 0.05
= 9.38% when FPR = 5%

P (S|P ) =
0.0057× 0.9

0.0057× 0.9 + 0.9943× 0.01
= 34.11% when FPR = 1%

The tests would be more accurate if the infection rate was higher, which may
be achieved by looking at certain regions within counties. The results for each U.S.
state are presented in Table 1. The numbers outside the parentheses represent P (S|P )

when there are no false negatives, and the numbers inside the parentheses show the
corresponding probabilities when FNR = 10%. Despite that probabilities only for 7

states (CT, DE, DC, MA, NJ, NY, and RI) cross the “flip of a coin” threshold of 50%
(when FPR = 1%), COVID-19 tests with low FNR and FPR are extremely unlikely in
reality. Hence, assuming that the test results are independent of each other, a random
person would need to test positive four times in the state of New Jersey to make sure
that he actually has the disease, while in a state like Montana this number skyrockets
to 100 times!

Unless multiple testing is done, it is impossible to say whether a random person
without symptoms or previous contact with infected people has COVID-19. The number
of times the test needs to be performed varies from one state to another, and also
hinges on dependence or independence of test results. By obvious reasons the necessity
of multiple testing substantially inflates its cost. On the other hand, if the test is
performed only once or even twice, its results are effectively useless. If a random
person still decides to undergo testing and pays for it from his pocket, he makes an
individual decision weighing associated benefits and costs (given that he understands
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the associated probabilities). In this case, he should be allowed to do it voluntarily
unless the tests’ capacity is constrained. However, any policy compelling every person
to test for COVID-19 has no economic foundation, because the costs will surely outweigh
the benefits of multiple testing. In the end, it does not even matter who is incurring the
costs: government, private enterprises or consumers — social welfare will decrease.

The situation would be different if, for example, someone had direct contact with
an infected person. Then, it is effectively a flip of a coin whether this person got infected
or not. When the prior probability rises to 50%, the examined inverse probabilities
increase dramatically, and the associated percentages match the accuracy of the tests.
For example, for the USA, when P (S) = 50%, FNR = 0 and FPR = 5% it follows that
P (S|P ) = 95.24%, which is nine times higher than the initial 10.32%. Thus, testing is
more likely to be efficient for anyone who has symptoms or had contact with an infected
person.

4 Conclusion

In this note I examined the feasibility of COVID-19 mass testing policies using
simple logic of medical testing hinging on their sensitivity and specificity. Using the USA
as the example, I showed that mass testing has questionable economic foundation even
for the states with the highest infection rates unless the accuracy of COVID-19 tests
approaches 100%. Since the latter is not feasible, testing should be done exclusively on
a voluntary basis for people who are ready to pay for them given the available capacity.

Because multiple testing is required to make sure that a randomly selected
person actually has the disease, it creates substantial strain on testing capacity and
the associated costs. While the benefits of multiple testing remain uncertain, the costs
are real and rise substantially for the regions with low infection rates.
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Table 1: Percentage Probabilities of Having COVID-19 Conditional on
Testing Positive

False Positive Rate (FPR) 5% 4% 3% 2% 1%

USA Total 10.31 (9.38) 12.56 (11.45) 16.08 (14.71) 22.33 (20.55) 36.51 (34.10)

Alabama 7.16 (6.49) 8.80 (7.99) 11.39 (10.37) 16.17 (14.79) 27.84 (25.78)

Alaska 1.36 (1.22) 1.69 (1.52) 2.24 (2.02) 3.33 (3.01) 6.45 (5.85)

Arizona 5.77 (5.22) 7.11 (6.44) 9.26 (8.41) 13.27 (12.11) 23.44 (21.60)

Arkansas 4.93 (4.46) 6.09 (5.52) 7.96 (7.22) 11.49 (10.46) 20.62 (18.94)

California 5.64 (5.11) 6.96 (6.31) 9.07 (8.24) 13.02 (11.87) 23.04 (21.22)

Colorado 8.54 (7.75) 10.46 (9.51) 13.47 (12.29) 18.94 (17.37) 31.85 (29.60)

Connecticut 19.61 (18.00) 23.37 (21.54) 28.91 (26.79) 37.89 (35.44) 54.95 (52.33)
Delaware 16.76 (15.35) 20.11 (18.47) 25.13 (23.20) 33.49 (31.19) 50.18 (47.55)

District Of Columbia 20.55 (18.89) 24.44 (22.55) 30.13 (27.96) 39.28 (36.80) 56.40 (53.80)
Florida 5.20 (4.70) 6.41 (5.81) 8.37 (7.60) 12.06 (10.98) 21.52 (19.80)

Georgia 8.35 (7.58) 10.23 (9.30) 13.19 (12.03) 18.56 (17.02) 31.32 (29.10)

Hawaii 0.91 (0.82) 1.13 (1.02) 1.51 (1.36) 2.25 (2.03) 4.40 (3.98)

Idaho 3.18 (2.87) 3.94 (3.56) 5.19 (4.69) 7.59 (6.88) 14.11 (12.88)

Illinois 16.37 (14.98) 19.66 (18.05) 24.60 (22.70) 32.86 (30.58) 49.46 (46.83)

Indiana 9.63 (8.75) 11.76 (10.71) 15.09 (13.79) 21.05 (19.35) 34.78 (32.43)

Iowa 11.32 (10.30) 13.76 (12.56) 17.54 (16.07) 24.19 (22.31) 38.96 (36.49)

Kansas 6.57 (5.95) 8.08 (7.33) 10.49 (9.54) 14.95 (13.66) 26.02 (24.04)

Kentucky 4.37 (3.95) 5.40 (4.89) 7.07 (6.41) 10.25 (9.32) 18.60 (17.05)

Louisiana 15.14 (13.84) 18.24 (16.72) 22.93 (21.12) 30.86 (28.65) 47.16 (44.55)

Maine 3.47 (3.14) 4.31 (3.89) 5.66 (5.12) 8.26 (7.50) 15.27 (13.95)

Maryland 15.50 (14.17) 18.66 (17.11) 23.42 (21.58) 31.45 (29.22) 47.85 (45.23)

Massachusetts 22.95 (21.14) 27.13 (25.10) 33.17 (30.88) 42.68 (40.13) 59.83 (57.27)

Michigan 10.46 (9.51) 12.74 (11.62) 16.30 (14.91) 22.61 (20.82) 36.88 (34.47)

Minnesota 8.43 (7.65) 10.33 (9.39) 13.31 (12.14) 18.72 (17.17) 31.54 (29.31)

Mississippi 9.93 (9.02) 12.11 (11.03) 15.52 (14.19) 21.61 (19.88) 35.54 (33.16)

Missouri 4.36 (3.94) 5.39 (4.88) 7.06 (6.40) 10.23 (9.30) 18.57 (17.03)

Montana 0.97 (0.87) 1.21 (1.09) 1.61 (1.45) 2.39 (2.16) 4.68 (4.23)

Nebraska 13.21 (12.04) 15.98 (14.62) 20.23 (18.58) 27.56 (25.51) 43.21 (40.65)

Nevada 5.49 (4.97) 6.77 (6.14) 8.83 (8.02) 12.69 (11.57) 22.53 (20.74)

New Hampshire 6.55 (5.93) 8.05 (7.31) 10.46 (9.51) 14.91 (13.62) 25.95 (23.98)

New Jersey 27.27 (25.24) 31.92 (29.67) 38.46 (36.00) 48.39 (45.77) 65.22 (62.79)
New Mexico 7.13 (6.46) 8.76 (7.95) 11.35 (10.33) 16.11 (14.73) 27.75 (25.69)

New York 28.64 (26.54) 33.41 (31.11) 40.08 (37.58) 50.09 (47.46) 66.74 (64.37)
North Carolina 5.59 (5.06) 6.89 (6.25) 8.99 (8.16) 12.90 (11.76) 22.86 (21.05)

North Dakota 6.58 (5.97) 8.10 (7.35) 10.52 (9.56) 14.99 (13.69) 26.07 (24.09)

Ohio 5.94 (5.38) 7.32 (6.63) 9.52 (8.65) 13.64 (12.44) 24.01 (22.14)

Oklahoma 3.33 (3.00) 4.12 (3.73) 5.43 (4.91) 7.93 (7.19) 14.69 (13.42)

Oregon 2.04 (1.84) 2.54 (2.29) 3.36 (3.03) 4.96 (4.48) 9.45 (8.58)

Pennsylvania 10.89 (9.91) 13.25 (12.09) 16.92 (15.49) 23.41 (21.57) 37.93 (35.49)

Rhode Island 22.59 (20.80) 26.72 (24.71) 32.72 (30.44) 42.18 (39.63) 59.33 (56.77)
South Carolina 4.61 (4.16) 5.69 (5.15) 7.45 (6.76) 10.78 (9.80) 19.46 (17.86)

South Dakota 10.50 (9.55) 12.79 (11.66) 16.36 (14.97) 22.68 (20.89) 36.98 (34.56)

Tennessee 6.80 (6.16) 8.35 (7.58) 10.84 (9.86) 15.42 (14.10) 26.73 (24.71)

Texas 4.49 (4.06) 5.56 (5.03) 7.28 (6.60) 10.53 (9.58) 19.06 (17.49)

Utah 6.00 (5.43) 7.39 (6.70) 9.61 (8.73) 13.76 (12.56) 24.19 (22.31)

Vermont 3.08 (2.78) 3.82 (3.45) 5.03 (4.55) 7.36 (6.67) 13.71 (12.51)

Virginia 9.95 (9.04) 12.13 (11.05) 15.55 (14.21) 21.64 (19.91) 35.58 (33.21)

Washington 5.79 (5.24) 7.13 (6.47) 9.29 (8.44) 13.32 (12.15) 23.52 (21.67)

West Virginia 2.26 (2.04) 2.81 (2.53) 3.71 (3.35) 5.47 (4.95) 10.37 (9.43)

Wisconsin 6.26 (5.67) 7.71 (6.99) 10.02 (9.11) 14.32 (13.07) 25.05 (23.12)

Wyoming 3.06 (2.76) 3.79 (3.42) 4.99 (4.52) 7.31 (6.63) 13.63 (12.43)

Notes: The numbers in the table represent the probabilities of having COVID-19 conditional on positive test. Each
column provides values for different FPR when false negative rate (FNR) is zero. Numbers in the brackets are
calculated for the same FPR, but when FNR = 10%. Numbers in bold are probabilities higher than 50%.
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