
Prevalence of Simpson’s Paradox in Nonparametric Statistical Analysis of Medical and

Other Scientific Data: Theoretical and Computational Analysis

James Boudreau1

Justin Ehrlich2

Shane Sanders3

September 9, 2020

I. Introduction

 Simpson’s Aggregation Paradox, also known as the Yule-Simpson Aggregation Paradox,

represents an anomaly in statistics whereby two qualitatively equivalent statistical test results—

each arising from one of two distinct constitutent data sets—disappears when the same statistical

test is applied to the pooled data. The paradox was first put forth by Yule (1903) and later

developed by Simspon (1951). While first considered strictly for the domain of parametric testing,

its presence in non-parametric statistical results has recently been studied (Haunsperger, 2003;

Haunsperger and Saari ,1991; Bargagliotti, 2009). Of particular importance to the present study,

Haunsperger and Saari (1991) find conditions for Simpson reversals in rank sum statistical testing,

where the term Simpson reversal is used synonymously with the term instances of Simpson’s

Aggregation Paradox herein. In general, the paradox has been found to affect statistical results in

many important scientific domains, including environmental and related ecological research (see,

e.g., Pineiro et al., 2006 or Allison and Goldberg, 2002). In studying global temperature over time,

Foster and Rahmstorf (2011) note that the scale of data (time scale of study) can influence the

statistical results of a study, for example.

 In one respect, the Simpson paradox can be viewed as a robustness check on a given statistical

result. When the paradox occurs, it follows that a given result is at least partly a function of scale

or sample size. As noted, the paradox has been shown to occur for the Wilcoxon-Mann-Whitney

(WMW) Rank Sum Test. However, there exists no computational or empirical evidence as to the

frequency with which instances of the paradox occur in the case of the WMW Test and little such

evidence for non-parametric statistical tests overall. Are Simpson reversals pervasive or only a

marginal concern for the WMW Test? Even previous research as to the incidence of the paradox

for parametric statistical tests is scarce and provides somewhat contrasting conclusions.

 There are two studies that directly estimate the incidence of Simpson’s Paradox for

parametric tests: one pertaining to contingency tables and the other pertaining to path models.

Specifically, Pavlides and Perlman (2009) find that a Simpson Reversal occurs for one-sixtieth

(1.67%) of all 2𝑥2𝑥2 contingency tables. Kock (2015) estimates the likelihood of a Simpson

reversal in path models as approximately 12.8%. For nonparametric statistical tesitng, Nagaraja

and Sanders (2020) consider a case in which a data set is ordinally replicated and then pooled with

the replicate data set. In such an environment, the authors prove that Simpson reversals cannot

1Economics, Finance, and Qualitative Analysis, Kennesaw State University, email: jboudre5@kennesaw.edu.
2
Sport Analytics, Syracuse University, Syracuse, email: jaehrlic@syr.edu.

3 Sport Analytics, Syracuse University, Syracuse, email: sdsander@syr.edu.

occur if the sign test for matched pairs is applied to the primitive and pooled data sets. They also

show evidence of Simpson reversals for the WMW Test.

 Despite the important theoretical contributions by Haunsperger and Saari (1991) and

Nagaraja and Sanders (2020), there have been no computational studies that assess the incidence

of Simpson reversals in the case of non-parametric tests. Though we know the WMW Test yields

instances of the paradox, we cannot ascertain without computational support whether these

instances are more frequent, as in the case of path models, or somewhat rare, as in the case of

contingency tables.

 The answer to the previous question has potentially important implications. The WMW Test

is a leading non-parametric statistical test across the medical sciences. For example, this test is

routinely used to assess drug efficacy in FDA clinical trials (see, e.g., Boudreau et al. 2018 for a

discussion of FDA use of this test in the Statistical Review and Evaluations of products such as

Novantrone, Cologuard, Memantine, Pitressin, Berinert, SPD485, Oxcarbazepine, Oxaliplatin,

Novartis, Trileptal, Vascepa, and countless others). Results as to the incidence of Simpson

reversals for the WMW Test can effectively assess the general robustness of WMW Test results to

data scale changes.

 As Simpson reversals cast ambiguity upon a given original result, the incidence of Simpson

reversal for a test shares similarities with the concept of a hypothesis test p-value. In the same

way that a p-value assesses the proportion of significance results that are, in fact, non-robust due

to sample variation, incidence of Simpson reversal assesses the proportion of statistical test results

that are non-robust due to data scale dependence. In this sense, the proportional incidence of

Simpson reversals might be thought of as loosely analogous to a hypothesis test p-value (e.g., when

considering the magnitude of the proportion).

 Herein, we report the initial development of methods to consider all 2-group, 𝑛-element per

group cases of rank sum scoring for 𝑛 ∈ {2,3,4,5,6,7,8}. For each case up to 𝑛 = 7, we enumerate

every possible rank outcome sequence in that case. For each given sequence, we then ordinally

replicate the sequence and consider all possible poolings of the sequence with its ordinal replicate.

For each case, we then compute the relative frequencey with which a strict Simpson reversal

occurs. We find that strict instances of the Paradox cannot occur for 2-group, k-element per group

cases of rank sum scoring where 𝑛 ∈ {1,2} but that instances theoretically occur for at least as

many as roughly 1.7 percent of sequence poolings in the 2-group, 5-element and 2-group, 7-

element cases. Given the computational complexity of the problem—for the 2-group, 8-element

case, there are 7.74 trillion possible poolings of two rank data sequences—we are not able to extend

these theoretical lower-bound (sufficiency) results beyond the 𝑛 = 7 case at present. However,

we use our theoretical sufficiency condition (Theorem 1) to guide a simulation approach to

characterize the 2-group, 8-element case, as well as nuances of cases with 𝑛 ≤ 7.

 We conclude from our computational results that the incidence of Simpson reversal for small

sample cases of rank sum scoring is (not) roughly similar to previous results on 2x2x2 contingency

tables (path models). Moreover, the computed rate of Simpson reversals in this setting is lower

than a standard, allowable Type I error rate (𝛼-value) for a statistical test. Given the conceptual

similarities between a test’s p-value and its Simpson reversal rate as discussed previously, we

might then characterize the incidence of Simpson reversals for considered cases of rank sum

testing as “tolerable” from the perspective of statistical sensitivity. For certain initial data

sequences, however, reversals are found to be much more prevalent, occurring as frequently as

roughly once in five poolings for certain sample size cases. As such, the incidence of Simpson

reversals should ideally be considered conditional upon both the test and data under consideration.

II. Rank Sum Scoring and Simpson’s Aggregation Paradox: Definitions and a Theorem

Definitions

Let us formally define two-group rank sum scoring. Consider two groups, A and B. Each group is

defined as a rank-ordered sequence of 𝑛 individual elements, where 𝑛 is some integer greater than

1 (𝑛 ∈ 𝑍+). For example, 𝐴 is defined as 𝐴 = (𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛), where the element 𝑎𝑖 represents

the 𝑖𝑡ℎ ranked element in 𝐴. We define an event as an objective process of comparison that

generates a complete rank-order sequence of individuals across more than one group (i.e., both

within and between groups). An event might be defined as a competition or as a statstical test.

Consider an event in which elements of A and B are compared. If A and B are each composed of 𝑛

elements, for example, then the event generates a rank-ordered outcome sequence of 2𝑛 elements.

One possible outcome sequence for the case in which 𝑛 = 3 is 𝐹𝐴𝐵 = (𝑎1, 𝑏1, 𝑏2, 𝑎2, 𝑏3, 𝑎3). If 𝑎𝑖

precedes 𝑏𝑗 in the outcome sequence, we say 𝑎𝑖 ≻ 𝑏𝑗 (𝑎𝑖 ranks higher than 𝑏𝑗). For simplicity, we

assume that rank-order equality between two elements is not possible, an outcome that would

obtain given continuous measurement of underlying parameter values. For any 𝑎𝑖 ∈ 𝐴 and 𝑏𝑗 ∈ 𝐵,

that is, we have that 𝑎𝑖 ≻ 𝑏𝑗 ⨁ 𝑏𝑗 ≻ 𝑎𝑖 is a tautology.

 Formally, we represent the rank of an element 𝑎𝑖 ∈ 𝐴 in the outcome sequence 𝐹𝐴𝐵 as

𝑟(𝑎𝑖|𝐹𝐴𝐵). Let 𝑥𝑖
+(𝐹𝐴𝐵) = {𝑥 ∈ 𝐹𝐴𝐵: 𝑥 ≻ 𝑎𝑖} be the set of elements in 𝐹𝐴𝐵 that rank better than 𝑎𝑖.

Then, 𝑟(𝑎𝑖|𝐹𝐴𝐵) = |𝑥𝑖
+(𝐹𝐴𝐵) + 1|. From elemental rankings, we generate a rank sum score for

each group as follows. The respective scores for 𝐴 and 𝐵 based for the outcome sequence 𝐹𝐴𝐵 are

𝑆(𝐴|𝐹𝐴𝐵) = ∑ 𝑟(𝑎𝑗|𝐹𝐴𝐵)𝑎𝑗∈𝐴 and 𝑆(𝐵|𝐹𝐴𝐵) = ∑ 𝑟(𝑏𝑗|𝐹𝐴𝐵)𝑏𝑗∈𝐵 , where it must be that 𝑆(𝐴|𝐹𝐴𝐵) +

𝑆(𝐵|𝐹𝐴𝐵) =
2𝑛(2𝑛+1)

2
. That is, the sum of ranks for a 2𝑛 element sequence simply equals the sum

of integers from 1 to 2𝑛. We map from group scores to group rankings to obtain the following

outcomes.

If 𝑆(𝐴|𝐹𝐴𝐵) < 𝑆(𝐵|𝐹𝐴𝐵), then 𝐴 ≻ 𝐵 ≡ If 𝑆(𝐴|𝐹𝐴𝐵) < 𝑆(𝐵|𝐹𝐴𝐵), then 𝐴 ranks higher than 𝐵 (1)

If 𝑆(𝐴|𝐹𝐴𝐵) = 𝑆(𝐵|𝐹𝐴𝐵), then 𝐴 ∼ 𝐵 ≡ If 𝑆(𝐴|𝐹𝐴𝐵) = 𝑆(𝐵|𝐹𝐴𝐵), then 𝐴 ranks equally with 𝐵 (2)

If 𝑆(𝐴|𝐹𝐴𝐵) > 𝑆(𝐵|𝐹𝐴𝐵), then 𝐴 ≺ 𝐵 ≡ If 𝑆(𝐴|𝐹𝐴𝐵) < 𝑆(𝐵|𝐹𝐴𝐵), then 𝐴 ranks lower than 𝐵 (3)

Replicated Data Aggregation

 We consider an environment in which a data set yields a given aggregate or group rank-

ordering result under rank sum scoring (e.g., 𝐴 ≻ 𝐵). We then ordinally replicate the data. By

necessity, the ordinal replicate data will yield the same group rank result under rank sum scoring.

As rank sum scoring is a non-parametric form of scoring, only the order of elements influences

the group ranking. We then aggregate the original data set with its ordinal replicate as in Nagaraja

and Sanders (2020) and consider whether (under what conditions) the pooled data yields a different

group rank result under rank sum scoring than do its two constituent data sets. That is, we consider

the conditions for strict Simpson reversal, whereby outcome 1 (3) is obtained for each constitutent

data sequences but outcome 3 (1) is obtained for the pooled sequence. It is important to note that

an ordinal-replicate data sequence can have starkly different parametric values than the original

data sequence that it ordinally replicates. Ordinal replication simply implies the same ordering of

elements across the two sequences.

 Let 𝐹𝐴𝐵 represent the original data sequence, 𝐹′𝐴𝐵 its ordinal replicate, and 𝐹𝐹′𝐴𝐵 the

sequence whereby 𝐹𝐴𝐵 and 𝐹′𝐴𝐵 are pooled by comparing the underlying parametric value of each

element. Formally, we define a Simpson reversal as follows.

Definition: Simpson Reversal: A strict Simpson reversal occurs if [𝑆(𝐴|𝐹𝐴𝐵) − 𝑆(𝐵|𝐹𝐴𝐵)]∙
[𝑆(𝐴|𝐹𝐹′

𝐴𝐵) − 𝑆(𝐵|𝐹𝐹′
𝐴𝐵)] < 0. Equivalently, a strict Simspon reversal occurs if [𝑆(𝐴|𝐹′𝐴𝐵) −

𝑆(𝐵|𝐹′𝐴𝐵)] ∙ [𝑆(𝐴|𝐹𝐹′
𝐴𝐵) − 𝑆(𝐵|𝐹𝐹′

𝐴𝐵)] < 0. These conditions yield the group rank result that

(𝐴 ≻𝐹 𝐵 ⋀ 𝐴 ≻𝐹′ 𝐵) but 𝐵 ≻𝐹𝐹′ 𝐴 (i.e., that 𝐴 ranks strictly higher than 𝐵 in 𝐹 and 𝐹′, but

𝐵 ranks strictly higher than 𝐴 for 𝐹𝐹′).

Theorem

We now derive a sufficient condition for the occurrence and absence of Simpson reversal in Rank

Sum Scoring.

Theorem 1: Sufficient Condition for Simpson Reversal in Rank Sum Scoring: For any two

groups, 𝐴 and 𝐵, such that 𝐴 ≻ 𝐵 in pairwise comparison for a given outcome sequence, 𝐹𝐴𝐵 (i.e.,

𝐴 ≻𝐹𝐴𝐵
𝐵), let 𝜁 be the largest integer such that 𝑏𝑖+𝜁−1 ≻ 𝑎𝑖 in 𝐹 (𝐹′). A strict Simpson reversal

occurs if 𝑆(𝐵|𝐹𝐴𝐵) − 𝑆(𝐴|𝐹𝐴𝐵) < 𝑛𝜁.

Proof: Consider the differential impact toward a reversal that 𝐹𝐴𝐵
′ can have when pooled with

𝐹𝐴𝐵 if all 𝑛 elements of 𝐹𝐴𝐵
′ are pooled with 𝐹𝐴𝐵 such that they are placed between 𝑏𝑖+𝜁−1 and 𝑎𝑖

of 𝐹𝐴𝐵. In this case, the pooling effect of 𝐹𝐴𝐵
′ upon 𝐹𝐴𝐵 is to raise the score of 𝐴 by 2𝑛𝜁 more

rank sum units than the score of 𝐵. If the 2𝑛 elements of 𝐹𝐴𝐵
′ are pooled with 𝐹𝐴𝐵 at this

position, then 𝜁 more elements of 𝐴 in 𝐹𝐴𝐵 than 𝐵 in 𝐹𝐴𝐵 lose 2𝑛 rank positions (gain 2𝑛

additional rank sum points) to the elements of 𝐹𝐴𝐵
′ .

As a countervailing effect, 𝐴 has a lower score than 𝐵 by 𝑆(𝐵|𝐹𝐴𝐵) − 𝑆(𝐴|𝐹𝐴𝐵) units in 𝐹𝐴𝐵 (by

definition) and by 𝑆(𝐵|𝐹𝐴𝐵) − 𝑆(𝐴|𝐹𝐴𝐵) units in 𝐹′𝐴𝐵, as 𝑆(𝐵|𝐹′𝐴𝐵) − 𝑆(𝐴|𝐹′𝐴𝐵) = 𝑆(𝐵|𝐹𝐴𝐵) −

𝑆(𝐴|𝐹𝐴𝐵) due to 𝐹𝐴𝐵 and 𝐹′𝐴𝐵 being ordinal replicates. Then, 𝑆(𝐴|𝐹𝐹′𝐴𝐵) relative to 𝑆(𝐵|𝐹𝐹′𝐴𝐵)

depends upon the magnitude of the pooling effect in comparison to the magnitude of [𝑆(𝐵|𝐹𝐴𝐵) −

𝑆(𝐴|𝐹𝐴𝐵)] and [𝑆(𝐵|𝐹′
𝐴𝐵) − 𝑆(𝐴|𝐹′

𝐴𝐵)], where the latter two terms are equal to each other. For

a sequence, 𝐹𝐴𝐵, and its ordinal replicate, then, a Simpson reversal is certain to occur if 2∙

[𝑆(𝐵|𝐹𝐴𝐵) − 𝑆(𝐴|𝐹𝐴𝐵)] < 2𝑛𝜁 or if 𝑆(𝐵|𝐹𝐴𝐵) − 𝑆(𝐴|𝐹𝐴𝐵) < 𝑛𝜁 ∎

 Interestingly, this condition is equivalent to the condition for a violation of Independence

from Irrelevant Alternatives (IIA) found in Boudreau et al. (2014). This equivalence is not

coincidental. Rather, Simpson reversals share important properties with IIA violations. In each

case, a pairwise group ranking is overturned by the inclusion of additional data, where the imposed

data is not expected to overturn the original ranking. Like an IIA violation, a Simpson reversal

requires the additional data to impose a sufficiently differential effect upon the respective rank

sum scores of the two groups being compared. The conditions for that differential effect are the

same for IIA violations and for Simpson reversals.

III. The Sample Space: A Combinatorial Description

For the 2 𝑥 𝑛 case, there are
(2𝑛)!

(𝑛!)2 initial sequences, 𝐹. We are arranging 2𝑛 elements—𝑛 elements

from each of 2 groups—where we do not distinguish between respective objects of a given group.

For each initial sequence, we then ask in how many ways 𝐹 can be pooled with its ordinal replicate,

𝐹′. This is equivalent to a “stars and bars” combinatorial problem, in which we are placing 2𝑛

“stars” or elements from 𝐹′ into 2𝑛 “bars” or potential pooling positions between the elements of

𝐹. Therefore, there are
(4𝑛)!

([2𝑛]!)2 poolings for each initial sequence. As such, the number of poolings

for a given (2 𝑥 𝑛) case equals the product of the number of initial sequences and the number of

poolings per initial sequence. Hence, the total number of poolings equals
(2𝑛)!

(𝑛!)2 ∙
(4𝑛)!

([2𝑛]!)2 for each

case, (2 𝑥 𝑛). For example, for the 2 𝑥 7 case, there are
(2∙7)!

(7!)2 = 3,432 initial sequences, 𝐹.

Moreover, there are
(4∙7)!

([2∙7]!)2 = 40,116,600 poolings per initial sequence. As such, there are

approximately 3,432 ∙ 40,116,600 ≈ 137.68 billion possible poolings for the 2 𝑥 7 case. We

provide the sample space for each (2 𝑥 𝑛) case through 𝑛 = 7, in Table 1 below.

IV. Computational Results and Discussion

We wrote a computational algorithm in Java by which to search the sample space of each case

where 0 < 𝑛(∈ 𝑍+) < 7. The algorithm programmatically generates all possible initial sequences,

𝐹𝐴𝐵 (𝐹′𝐴𝐵), for a case, then creates all possible pooled sequences, 𝐹𝐹′𝐴𝐵, for each initial sequence.

For each initial sequence, rank sum scores for 𝐴 and 𝐵 are computed. This scoring task is then

repeated for each pooling 𝐹𝐹′𝐴𝐵 of 𝐹𝐴𝐵 and 𝐹′𝐴𝐵 and iteratively for each pooling of each initial

sequences. Then, instances of 𝑆𝑖𝑚𝑝𝑠𝑜𝑛 𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙 are checked using the condition obtained in

Theorem 1. This brute force, enumerative approach is extended later in the paper using a

simulation approach. The algorithmic code is provided in Appendix 1 of the paper. Computational

results are given in Table 1 as follows.

Table 1: Relative Frequency of Simpson Reversal by Case

|Groups| |Data Points

per Group|

|Initial Data

Sequences|

|Poolings per

Initial Sequence|

|Poolings overall| Simpson Reversal Rel. Frequency

2 1 2 6 12 0/12 = 0%

2 2 6 70 420 0/420 = 0%

2 3 20 924 18,480 30/18,480 = 0.80%

2 4 70 12,870 900,900 1,732/900,900 = 0.19%

2 5 252 184,756 46,558,512 795,392/46,558,512 = 1.71%

2 6 924 2,704,156 2,498,640,144 10,780,504/2,498,640,144 = 0.43%

2 7 3,432 40,116,600 137,680,171,200 2,435,044,740/

137,680,171,200 = 1.77%

We observe that Simpson reversals are not possible for sufficiently small 𝑛 (i.e., 𝑛 < 3). In the

context of Theorem 1, the largest possible 𝜁 is not sufficiently large to motivate a strict Simpson

reversal. For the 2𝑥1 and 2𝑥2 cases, a group that is strictly outranked in 𝐹𝐴𝐵 cannot have a positive

𝜁 and therefore a strict Simpson reversal is not possible for these cases. We can also consider

computed cases where 𝑛 > 2. From even to odd cases, the results suggest a wavelike movement

in the likelihood of a Simpson reversal. In general, there is a lower likelihood of strict Simpson

reversal in even cases due to the possibility of ties for n-even cases of pairwise rank sum scoring

(but not for n-odd cases). With some probability mass allowing for a pairwise tie in the n-even

cases, strict Simpson reversals are less likely. This result also holds for other social choice

violations (e.g., violations of transitivity and of IIA; see Boudreau et al. 2014). To evaluate the

marginal effect of increases in 𝑛, as distinct from the effect of changes from even to odd case, one

should compare the iterative trend between 𝑛 and 𝑛 + 2 rather than that between 𝑛 and 𝑛 + 1. We

do this for the even and odd cases respectively in Figure 1.

Figure 1:

Over the set of cases computed, the relative frequency of reversal rises for both the even and odd

set of cases. For the 2x8 case, we run a simulation to estimate whether this trend might continue.

Specifically, we randomly select and generate one-quarter of all possible initial sequences, 𝐹𝐴𝐵,

(without replacement) for this case and then replicate each selected initial sequence. For each

selected initial sequence and its replicate, we then randomly select approximately 0.1% of all

possible poolings or a little more than 600,000 poolings per sampled initial sequence. For each

pooling, we check for reversals as in the main algorithm. Doing so, we estimate that 0.63% of all

poolings result in reversal for the 2x8 case. In proportion terms, this represents a substantial

increase from the 2x6 case. As such, this estimate suggests that our trend of rising relative

frequency of reversal from 𝑛 to 𝑛 + 2 is maintained for the 2x8 case.

 We find that strict instances of the Paradox cannot occur for 2-group, k-element per group

cases of rank sum scoring where 𝑘 ∈ {1,2} but that instances occur for as many as roughly 1.7

percent of sequence poolings in the 2-group, 5-element and 2-group, 7-element cases. We conclude

from our computational results that the incidence of Simpson reversal for small sample cases of

rank sum scoring is (not) roughly similar to previous results on 2x2x2 contingency tables (path

models). Moreover, the computed rate of Simpson reversals in this setting is generally lower than

a standard, allowable Type I error rate (𝛼-value) for a statistical test. Given conceptual similarities

between a test’s p-value and its Simpson reversal rate, as discussed previously, we might then

characterize the incidence of Simpson reversals for considered cases of rank sum testing as

“tolerable” from the perspective of statistical sensitivity.

 Next, we consider how likelihood of Simpson reversal relates to rank sum score for A and B

in 𝐹𝐴𝐵. We do this sub-analysis for the 2x5 case and visualize the results in the heat map and scatter

plot of Figure 2.

Figure 2: Heat Map and Scatter Plot Relating Rank Sum Scores to Likelihood of Reversal

 High Score

For the 2x5 case, reversals are most likely when the rank sum score margin in 𝐹𝐴𝐵 is closest (i.e.,

where one group scores 27 and the other scores 28). A reversal is more likely if the original score

margin is close due to the relative ease with which a reversal can be obtained in such a case. As

the score margin increases, the relative frequency of reversals declines quickly. This observed

relationship between match “closeness” and likelihood of violation mirrors earlier results for

violations of transitivity and IIA under rank sum scoring (see Boudreau et al. 2019). We also find

that reversals cannot occur if the rank sum score margin in 𝐹𝐴𝐵 is equal to 7 or more for the 2x5

case. If the score margin is 7 or more, then it must be that 𝜁 ≤ 1. As such, we know that

𝑆(𝐵|𝐹𝐴𝐵) − 𝑆(𝐴|𝐹𝐴𝐵) > 𝑛𝜁 for this range of score margins in the 2x5 case, and a reversal cannot

occur.

 While the overall likelihood of reversal is relatively low for small sample cases of rank sum

scoring (e.g., relative to a standard 𝛼-value), there is evidence that certain types of sequences are

problematic. For example, sequences that yield closer scores were shown to be more productive

of reversals. As such, we compute the relative frequency of reversal for each initial sequence in

each case and then identify the initial sequence for each case that yields the highest such relative

frequency, as well as the relative frequency itself. In Figure 3, we plot the highest relative

frequency of reversal at the initial sequence level for each computed case. These same results are

represented in greater detail within Table 2.

Figure 3: Highest Initial Sequence Level Reversal Likelihood by Case

Table 2: Highest Initial Sequence Level Reversal Likelihood by Case

|Groups| |Data Points

per Group|

Highest Simpson Reversal

Likelihood by Initial Sequence

Generating

Sequence

S(A) - S(B) 𝜻

2 1 0/6 NA NA NA

2 2 0/70 NA NA NA

2 3 30/924 = 3.25% Abbaab 10 - 11 1

2 4 402/12,870= 3.12% Abbbaaab 19 - 17 1

2 5 26,872/184,756 = 14.54% Aabbbbaaab 27 - 28 2

2 6 187,520/2,704,156 = 6.93% Aaabbbbbabaa 38 - 40 2

2 7 8881034/40116600 = 22.14% Aaabbbbbbaaaab 52 - 53 3

 Note that the maximum reversal likelihood generating sequence for each case is not unique.

In each case, one could transpose the elements ‘a’ and the elements ‘b’ to obtain the same

reversal likelihood. We find that the maximum reversal likelihood generating sequence also

generates the closest margin of victory in each case (i.e., 1 rank sum unit for n-odd cases and 2

rank sum units for n-even cases). While the overall likelihood of reversal is consistently below

0.02 for computed cases, reversals are found to be much more prevalent for certain initial

sequences. In the 2𝑥7 case, the maximum initial sequence conditional likelihood of reversal is

approximately 0.22, for example. The results of Figure 3 suggest that it is important to consider

not only the statistical test but also the particular data (sequence) of interest when assessing

prevalence of Simpson reversals. As with the overall likelihood of reversal for computed cases,

we find that the maximum likelihood of reversal at the initial sequence level of the data strictly

increases from the 𝑛 to 𝑛 + 2 case for the range of computed cases.

V. Conclusion

 In this paper we have begun an investigation into the likelihood of Simpson reversals. Here

our sole theoretical result was a sufficiency condition, but in a future paper we plan to provide

both sufficient and necessary conditions in order to provide more accurate bounds on the score

differential between groups 𝐴 and 𝐵 that either guarantee the existence of a reversal or make one

impossible. Such results will then allow us to streamline our computational methods even more

in order to assess larger sized groups.

 The importance of being able to handle large samples is something our preliminary results

here indicate. Though this is a first approach, we have shown that group size has an impact on

the likelihood of reversals: as 𝑛 increases, reversals become more possible in general. The

individual cases of sequences displaying higher likelihoods of reversal themselves also see

higher heights as 𝑛 increases. More generally, of course, empirical data samples usually have

relatively large 𝑛. This paper is a first step toward analyzing such data, and our future papers

will continue to build on it.

References
Allison, V. J., & Goldberg, D. E. (2002). Species-Level versus Community-Level Patterns of Mycorrhizal

Dependence on Phosphorus: An Example of Simpson's Paradox. Functional Ecology, 16(3), 346-

352.

Bargagliotti, A. E. (2009). Aggregation and decision making using ranked data. Mathematical Social

Sciences, 58(3), 354-366.

Boudreau, J., Ehrlich, J., Raza, M., & Sanders, S. (2018). The likelihood of social choice violations in rank

sum scoring: algorithms and evidence from NCAA cross country running. Public Choice, 174(3-4),

219-238.

Boudreau, J., Ehrlich, J., Sanders, S., & Winn, A. (2014). Social choice violations in rank sum scoring: A

formalization of conditions and corrective probability computations. Mathematical Social

Sciences, 71, 20-29.

Foster, G., & Rahmstorf, S. (2011). Global temperature evolution 1979-2010. Environmental Research

Letters, 6(4), 1-8.

Haunsperger, D. B. (2003). Aggregated statistical rankings are arbitrary. Social Choice and Welfare, 20(2),

261-272.

Haunsperger, D. B., & Saari, D. G. (1996). Paradoxes in nonparametric tests. Canadian Journal of

Statistics, 24(1), 95-104.

Kock, N. (2015). How likely is Simpson's Paradox in path models? International Journal of e-

Collaboration, 11(1), 1-7.

Nagaraja, H., & Sanders, S. (2020). The aggregation paradox for statistical rankings and nonparametric

tests. PLOS ONE, 15(3), e0228627.

Pavlides, M. G., & Perlman, M. D. (2009). How likely is Simpson's paradox? The American Statistician,

63(3), 226-233.

Pineiro, G., Oesterheld, M., Batista, W. B., & Paruelo, J. M. (2006). Opposite changes of whole-soil vs.

pools C:N ratios: a case of Simpson's paradox with implications on nitrogen cycling. Global

Change Biology, 12, 804-809.

Simpson, E. H. (1951). The interpretation of interaction in contingency tables. Journal of the Royal

Statistical Society. Series B (Methodological), 13, 238-241.

Yule, G. U. (1903). Notes on the theory of association of attributes in statistics. Biometrika, 2(2), 121-

134.

Appendix I: Computational Code

import java.io.BufferedWriter;

import java.io.FileWriter;

import java.io.IOException;

import java.util.Arrays;

import java.util.HashMap;

import java.util.Map;

import java.util.Scanner;

import java.util.SortedSet;

import java.util.TreeSet;

import java.util.logging.Level;

import java.util.logging.Logger;

/**

 *

 * @author Justin Ehrlich

 */

public class SimpsonsParadox {

 private static int numGroups = 0;

 private static int numDataPoints = 0;

 int numPossibleInd = 0;

 int numIndWeakOnlyAnomalyTypeI = 0;

 int numIndWeakOnlyAnomalyTypeII = 0;

 int numPossibleCycles = 0;

 int numAnomaly = 0;

 int firstDegreeTransativityViolations = 0;

 int numWeakAnomaly = 0;

 int secondDegreeTransativityViolations = 0;

 int thirdDegreeTransativityViolations = 0;

 long numWinnerChanged = 0;

 long numWinnerChangedPossible = 0;

 long topNumWinnerChanged = 0;

 long topNumWinnerChangedPossible = 0;

 String topInitialSequence = "";

 Map<Long, Long> numIndependenceViolationCategoryOccurences = new HashMap<Long

, Long>();

 Map<Long, Long> numIndependenceViolationCategoryCycles = new HashMap<Long, Lo

ng>();

 Map<Long, Long> numSimponsParadoxViolationHighScore = new HashMap<Long, Long>

();

 Map<Long, Long> numSimponsParadoxViolationPossibleHighScore = new HashMap<Lon

g, Long>();

 public SimpsonsParadox() {

 }

 private void createShuffledEvent(String dataPoints, String originalDataPoints

, int numGroups, int numBins, int currentBin, int dataPointsAdded, char originalW

inner){

 if(dataPointsAdded == originalDataPoints.length()){

 char winner = findDependentWinner(dataPoints,numGroups);

 numWinnerChangedPossible++;

 if(winner == ' ' || originalWinner == ' '){ //weak

 return;

 }

 if(winner != originalWinner){

 numWinnerChanged++;

 }

 return;

 }

 if(currentBin >= numBins){

 //only allow for the correct number of bins. starts at 0 so should no

t equal numBins

 return;

 }

 for(int subsetSize=0; subsetSize <= originalDataPoints.length()-

dataPointsAdded; subsetSize++){

 String preString = dataPoints.substring(0, dataPointsAdded+currentBin

); //endIndex is exclusive, startIndex is inclusive

 String postString = dataPoints.substring(dataPointsAdded+currentBin);

 createShuffledEvent(preString + originalDataPoints.substring(dataPoin

tsAdded, dataPointsAdded+subsetSize) +

 postString,originalDataPoints,numGroups, numBins, currentBin+1, d

ataPointsAdded+subsetSize, originalWinner);

 }

 }

 //return ' ' if winner is tied

 private char findDependentWinner(String dataPoints, int numTeam){

 char[] groups = new char[numTeam];

 for(int i=0; i<numTeam; i++){

 groups[i] = (char) ('a' + (char)i);

 }

 int[] groupsScores = new int[numTeam];

 int counter = 0;

 for (int i = 0; i < dataPoints.length(); i++) {

 counter++;

 for(int j=0; j<numTeam; j++){

 if(dataPoints.charAt(i) == groups[j]){

 groupsScores[j] = groupsScores[j]+counter;

 }

 }

 }

 int min=groupsScores[0];

 int minIndex = 0;

 for (int i = 0; i < numTeam; i++){

 if(groupsScores[i] < min){

 min=groupsScores[i];

 minIndex = i;

 }

 }

 //detect tie

 for(int i = 0; i < numGroups; i++){

 if(i != minIndex){

 if(groupsScores[i] == groupsScores[minIndex]){

 return(' ');

 }

 }

 }

 return(groups[minIndex]);

 }

 private int findDependentWinnerScore(String dataPoints, int numTeam){

 char[] groups = new char[numTeam];

 for(int i=0; i<numTeam; i++){

 groups[i] = (char) ('a' + (char)i);

 }

 int[] groupsScores = new int[numTeam];

 int xScore = 0;

 int yScore = 0;

 int counter = 0;

 for (int i = 0; i < dataPoints.length(); i++) {

 counter++;

 for(int j=0; j<numTeam; j++){

 if(dataPoints.charAt(i) == groups[j]){

 groupsScores[j] = groupsScores[j]+counter;

 }

 }

 }

 int min=groupsScores[0];

 int minIndex = 0;

 for (int i = 0; i < numTeam; i++){

 if(groupsScores[i] < min){

 min=groupsScores[i];

 minIndex = i;

 }

 }

 //detect tie

 for(int i = 0; i < numGroups; i++){

 if(i != minIndex){

 if(groupsScores[i] == groupsScores[minIndex]){

 return(' ');

 }

 }

 }

 return(groupsScores[minIndex]);

 }

 private void findSimpsonsParadox(String dataPoints, int numGroups){

 long prevNumWinnerChanged = numWinnerChanged;

 long prevNumWinnerChangedPossible = numWinnerChangedPossible;

 char winner = findDependentWinner(dataPoints,numGroups);

 int numBins = dataPoints.length() + 1;

 createShuffledEvent(dataPoints,dataPoints,numGroups, numBins, 0, 0,winner

);

 long deltaNumWinnerChanged = numWinnerChanged - prevNumWinnerChanged;

 long deltaNumWinnerChangedPossible = numWinnerChangedPossible - prevNumWi

nnerChangedPossible;

 if(deltaNumWinnerChanged > topNumWinnerChanged){

 topInitialSequence = dataPoints;

 topNumWinnerChanged = deltaNumWinnerChanged;

 topNumWinnerChangedPossible = deltaNumWinnerChangedPossible;

 }

 long topScore = findDependentWinnerScore(dataPoints,numGroups);

 if (numSimponsParadoxViolationHighScore.containsKey(topScore)){

 numSimponsParadoxViolationHighScore.put(topScore, numSimponsParadoxVi

olationHighScore.get(topScore)+deltaNumWinnerChanged);

 } else{

 numSimponsParadoxViolationHighScore.put(topScore, (long)deltaNumWinne

rChanged);

 }

 if (numSimponsParadoxViolationPossibleHighScore.containsKey(topScore)){

 numSimponsParadoxViolationPossibleHighScore.put(topScore, numSimponsP

aradoxViolationPossibleHighScore.get(topScore)+topNumWinnerChangedPossible);

 } else{

 numSimponsParadoxViolationPossibleHighScore.put(topScore, (long)topNu

mWinnerChangedPossible);

 }

 }

 public static int countOccurrences(String haystack, char needle) {

 int count = 0;

 for (int i = 0; i < haystack.length(); i++) {

 if (haystack.charAt(i) == needle) {

 count++;

 }

 }

 return count;

 }

 private void generate(String dataPoints, int numGroups, int numDataPoints) th

rows IOException {

 for (int i = 0; i < numGroups; i++) {

 //don't allow more data points per group than numDataPoints

 if (countOccurrences(dataPoints, (char) (i + 97)) > numDataPoints) {

 return;

 }

 }

 //if more dataPoints are needed

 if (dataPoints.length() < numGroups * numDataPoints) {

 for (int i = 0; i < numGroups; i++) {

 generate(dataPoints + (char) (i + 97), numGroups, numDataPoints);

 }

 } else {

 permutationsCompleted++;

 findSimpsonsParadox(dataPoints, numGroups);

 }

 }

 public static void main(String[] args) throws IOException {

 int numGroups = 2;

 for(numDataPoints = 1; numDataPoints <= 7; numDataPoints++){

 SimpsonsParadox pR = new SimpsonsParadox();

 pR.generate("",numGroups, numDataPoints);

 }

 }

}

