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Abstract

Evaluation of asset pricing models is largely based on the alphas (intercepts) in the linear regression of

excess asset returns on risk factors. When regression errors are not normally distributed, the least squares

estimator for alphas is inefficient, which further leads to less powerful testing of alphas by the Gibbons,

Ross, and Shanken (1989, GRS) test. We use the composite quantile regression to estimate alphas, and

show that it provides more accurate alpha estimates under a variety of non-normal distributions. A

joint test of alphas using composite quantile regression is also developed, which can reject zero alphas in

spanning tests when the GRS test does not.
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1 Introduction

The influential Gibbons, Ross, and Shanken (1989, GRS hereafter) test of portfolio efficiency has become one

of the default tools for evaluating asset pricing models; see, e.g., Cochrane (2005), Fama and French (2015,

2016, 2017, 2018), and Hou, Xue, and Zhang (2015). More recently, Kleibergen and Zhan (2020) extend the

GRS test to construct confidence sets of risk premia; see also Kleibergen, Kong, and Zhan (2023). From a

methodological perspective, the GRS test, as well as its extension in Kleibergen and Zhan (2020), is a joint

test of alphas (intercepts) in a set of linear regression equations, for which the least squares estimator is

well known to be efficient under normally distributed regression errors. The GRS test is built on the least

squares estimator for alphas, and it is a uniformly most powerful test if the assumed normal distribution

holds. Financial asset returns, however, are typically not normally distributed (see, e.g., Affleck-Graves

and McDonald (1989)), and their resulting regression errors may not be exactly normal either. The least

squares estimator for alphas is thus unlikely to be efficient in empirically relevant settings. Consequently,

the estimated alphas by least squares could be imprecise due to non-normality, which further casts doubt on

the GRS test that relies on such estimated alphas.

It is worth noting that the alphas, or intercepts, in linear regression equations can be of interest in many

different contexts. For instance, in the so-called regression discontinuity designs, the difference in alphas

above and below the regression discontinuity cutoff can be interpreted as the local average treatment effect;

see, e.g., Cattaneo, Idrobo, and Titiunik (2019). In financial economics, alphas are often interpreted as the

abnormal returns with respect to the investment strategy reflected by regressors, so they are expected to

be zero under efficient portfolios; see, e.g., Gibbons, Ross, and Shanken (1989). Furthermore, in spanning

tests where tested risk factors are regressed on a set of existing factors (see, e.g., Hou, Mo, Xue, and Zhang

(2019)), whether the tested factors are considered redundant depends on the values of their alphas. All such

alphas have been widely estimated in existing empirical studies by least squares, which may not be efficient

especially when financial data are involved.

In light of the above, we propose to use an alternative estimator for alphas, which can outperform the

commonly used least squares estimator in a variety of data generating processes. The alternative estimator

we use is based on the composite quantile regression (CQR) approach of Zou and Yuan (2008), who show that

the CQR estimator for regression betas (slope) can be more efficient than the least squares estimator when

regression errors are non-normal. The efficiency gain of CQR results from combining the information from

multiple quantiles, and can be noticeably large. While the CQR approach is straightforward to implement,

our paper differs from the pioneering work of Zou and Yuan (2008) in several aspects. First, Zou and Yuan

(2008) consider one linear regression equation, while our setting involves a system of N equations with N ≥ 1.
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Second, Zou and Yuan (2008)’s interest lies in the regression betas (slope) of the single equation, while we

develop a joint test for evaluating alphas (intercepts) of N equations. Third, the analytical result provided in

Zou and Yuan (2008) relies on the simplification that all regressors are assumed to be centered, so they have

mean equal to zero; in contrast, we do not impose this simplification, since the expected values of regressors,

which correspond to factor risk premia in our considered setting, are generally non-zero. Put differently, our

contribution lies in extending the CQR approach so that it can be used for conducting inference on alphas in

a set of linear equations, while Zou and Yuan (2008)’s focus is on the estimation of betas in a single equation.

Despite all these differences, using CQR instead of least squares to improve efficiency under non-normality

remains to be the motivation for our paper.

Kai, Li, and Zou (2010) and Huang and Zhan (2022) also adopt the CQR approach. Consistent with Zou

and Yuan (2008), both Kai, Li, and Zou (2010) and Huang and Zhan (2022) find that there are efficiency gains

to use the CQR estimator instead of the least squares estimator under non-normality. However, Kai, Li, and

Zou (2010)’s focus is on nonparametric estimation through local composite quantile regression (LCQR), while

Huang and Zhan (2022) explore the boundary points of LCQR around the cutoff of regression discontinuity

designs. Therefore, these existing studies do not directly apply to our considered setting, although they do

shed light on the superior performance of CQR over least squares. Instead of assuming normally distributed

regression errors, Kai, Li, and Zou (2010) and Huang and Zhan (2022) make the weaker assumption that

regression errors are symmetrically distributed around zero. We therefore adopt this symmetry assumption,

so that the resulting CQR estimator (denoted by α̂CQR
i ) converges to the alpha of the mean regression.

Additionally, we also show that the CQR approach can be extended to allow for asymmetric (skewed) error

distributions, and propose a second CQR estimator (denoted by α̃CQR
i ) whose validity does not depend on

whether error distributions are symmetric or asymmetric. While α̃CQR
i is naturally appealing, we show that

α̂CQR
i can perform better under symmetric errors. Both α̂CQR

i and α̃CQR
i are, however, based on the CQR

approach, so they can outperform the least squares estimator in various non-normal settings.

For ease of exposition, we conduct a simulation study to highlight the difference between the least squares

estimator and the CQR estimator α̂CQR
i or α̃CQR

i for estimating alphas. As expected, we find that the CQR

estimator appears to be more efficient than the least squares estimator when the data generating process

of the linear regression involves non-normal error distributions. We further simulate the power curves of

both the GRS test and the CQR-based test for jointly testing zero alphas, under normal and non-normal

distributions. Consistent with the existing literature, the GRS test is found to be more powerful than the

CQR-based test under normally distributed errors. In contrast, under non-normally distributed errors, we

find the evidence that the power of the CQR-based test can exceed that of the GRS test.

We use the proposed CQR-based approach to study the factor models developed by Fama and French
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(2018) and Hou, Xue, and Zhang (2015). The six-factor model of Fama and French (2018) includes market

(Mkt-RF ), size (SMB), value (HML), profitability (RMW ), investment (CMA), and momentum (UMD)

factors, while the q-factor model of Hou, Xue, and Zhang (2015) involves only four factors: market (R MKT ),

size (R ME), investment (R IA), and return on equity (R ROE).1 Yet both Zhang (2020) and Hou, Mo,

Xue, and Zhang (2019) claim that the q-factor model subsumes the six-factor model in spanning tests, which

is consistent with their findings that the GRS test could not reject zero alphas when regressingHML, RMW ,

CMA, and UMD on the four factors of the q-factor model, i.e., the resulting GRS p-values are just too large

to reject the null of zero alphas. We, however, use the CQR-based approach to estimate alphas and conduct

the joint test of zero alphas. In contrast with the GRS test, the CQR-based test yields small p-values around

0.05, so we can reject zero alphas at the commonly used 5% or 10% significance level, indicating that the

q-factor model does not fully subsume the six-factor model of Fama and French (2018). On the other hand,

when we use the q5 model of Hou, Mo, Xue, and Zhang (2021), which augments the q-factor model with

the additional expected growth factor (R EG), we find that both the GRS test and the CQR-based test do

not reject zero alphas when regressing HML, RMW , CMA, and UMD on the q5 factors. All-in-all, our

findings indicate that the additional expected growth factor in the q5 model is crucial for helping explain

the momentum factor used in the Fama and French (2018) six-factor model.

In line with our paper, there exists a sizeable literature that aims to extend the GRS test to non-normal

error distributions. Zhou (1993), for example, assumes the class of elliptical distributions, which nests the

normal distribution as a special case; see also Harvey and Zhou (1993). Beaulieu, Dufour, and Khalaf (2007)

further allow for more general distributions including elliptical and non-elliptical ones. Unlike this branch

of literature that relies on non-normal distributional assumptions, the CQR approach does not assume any

specific distribution of regression errors. In this regard, the CQR approach is more comparable to the

generalized method of moments (GMM) approach, which also provides an asymptotic distribution of alpha

estimators without making distributional assumptions; see, e.g., Cochrane (2005) for a textbook discussion.

Unlike the GMM estimator that coincides the least squares estimator for alphas in the just-identified linear

regression, we show that the CQR approach can provide an appealing alternative under non-normal error

distributions.

The rest of the paper is organized as follows. Section 2 presents the CQR approach under symmetric error

distributions, which we use to estimate alphas and develop the joint test of alphas. Section 3 further extends

the CQR approach to allow for asymmetric (skewed) error distributions. To illustrate our methodology,

Section 4 provides a simulation study. The empirical application is discussed in Section 5. Section 6

1The Fama and French (2018) factors can be downloaded from Kenneth R. French’s online data library. The q factors are
available at https://global-q.org.
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concludes. Technical details and additional results are relegated to the Appendix.

2 GRS and CQR

Consider a system of N linear regression equations, where Xt is the L× 1 vector of regressors:



Y1t = α1 + β′
1Xt + ϵ1t

Y2t = α2 + β′
2Xt + ϵ2t

...

YNt = αN + β′
N
Xt + ϵNt

(1)

for t = 1, ..., T , and T > N +L. Let α = (α1, α2, ..., αN )′ be the N × 1 vector of alphas (intercepts). In line

with the GRS test, our objective is to evaluate whether H0 : α = 0 holds. Unlike the GRS test, we do not

assume the normal distribution of regression errors in ϵt = (ϵ1t, ϵ2t, ..., ϵNt)
′.

In the context of asset pricing, the dependent variable Yit, with i = 1, ..., N , in (1) can be the excess

return on the i-th test asset at time t, while Xt is for risk factor returns. If an asset pricing model using Xt

as risk factors is able to fully explain expected returns, then α = 0. The GRS test is thus commonly used

for testing H0 : α = 0 and evaluating models. Similarly, in spanning tests, the dependent variable Yit can be

the i-th tested factor, which is potentially spanned by the L existing factors in Xt. If each Yit is redundant

in the sense that it is fully spanned by Xt, then α = 0. Thus, the GRS test for testing H0 : α = 0 has also

been employed for evaluating Yit.

Since regression errors in ϵt are unobservable, their distributions are typically unknown. The existing

literature, however, has made distributional assumptions on ϵt, such as normal, t, mixtures of normal

distributions; see, e.g., Gibbons, Ross, and Shanken (1989), Zhou (1993), and Harvey and Zhou (1993).

In contrast, we do not make such distributional assumptions. In this section, we just impose the weaker

condition that the distribution of ϵt is symmetric around zero, as in Kai, Li, and Zou (2010) and Huang and

Zhan (2022). This symmetry condition is weaker, because it is nested by, e.g., the normal assumption. For

completeness, we further allow for asymmetric (skewed) error distributions in the later Section 3.

2.1 Gibbons-Ross-Shanken

Denote the ordinary least squares estimator for α by α̂LS = (α̂LS
1 , α̂LS

2 , ..., α̂LS
N )′, where α̂LS

i with i = 1, ..., N

is the intercept estimator by ordinary least squares for the i-th equation in (1). The commonly used GRS
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statistic for testing H0 : α = 0 reads:

GRS-stat ≡ T (T −N − L)

N(T − L− 1)
(1 + µ̂′

XΩ̂−1
X µ̂X)−1α̂LS′

(Σ̂LS)−1α̂LS ∼ FN,T−N−L (2)

where µ̂X = 1
T

∑T
t=1 Xt, Ω̂X = 1

T

∑T
t=1(Xt − µ̂X)(Xt − µ̂X)′, and Σ̂LS = 1

T−L−1

∑T
t=1 ϵ̂tϵ̂

′

t with ϵ̂t the least

squares residual for ϵt. The FN,T−N−L distribution of the GRS statistic results from the assumed normal

distribution of ϵt; see, e.g., Gibbons, Ross, and Shanken (1989).

An asymptotic counterpart of the GRS test can be written as follows, as T → ∞:

χ2(α̂LS) ≡ T α̂LS′
V̂ ar(α̂LS)−1α̂LS d→ χ2

N (3)

where V̂ ar(α̂LS) is the estimated asymptotic variance of α̂LS . The variance expression for α̂LS can be

derived from the GMM framework; see, e.g., Cochrane (2005) for a more detailed discussion. The χ2
N

distribution in (3) does not require the normality of ϵt. Instead, it results from the asymptotic normal

distribution of the least squares estimator α̂LS .

Both the GRS test in (2) and its asymptotic counterpart in (3) are, however, built on the least squares

estimator α̂LS . Under non-normal error distributions, α̂LS becomes less efficient, which further affects the

power of the tests in (2) and (3).

2.2 CQR for a single equation

Instead of using least squares to estimate each equation in (1), we use the CQR approach proposed by Zou

and Yuan (2008). Without loss of generality, we focus on the i-th equation in (1) in this subsection, so αi is

our parameter of interest:

Yit = αi + β′
iXt + ϵit, t = 1, ..., T, (4)

where the p.d.f. and c.d.f. of ϵit are denoted by fϵi and Fϵi , respectively.

To construct the CQR estimator for αi, we start with q quantile positions τk with k = 1, ..., q, such that

τk = k
1+q .

2 The objective function for CQR thus reads (see also Zou and Yuan (2008), Kai, Li, and Zou

(2010), Huang and Zhan (2022)):

(α̂i1, ...α̂iq, β̂
CQR
i ) = argmin

αik,βi

q∑
k=1

T∑
t=1

ρτk (Yit − αik − β′
iXt) (5)

2For example, if q = 5, then τ1 = 1/6, τ2 = 2/6, τ3 = 3/6, τ4 = 4/6, τ5 = 5/6. Kai, Li, and Zou (2010) and Huang and
Zhan (2022) show that q is a tuning parameter chosen by researchers, while q = 5 is often adequate for many non-normal
distributions. We thus also use q = 5 for our implementation of CQR.
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where ρτk(r) = τkr− r1(r < 0) is the so-called check function, and αik is the intercept at the k-th quantile.

Note that if q = 1, then (5) reduces to the objective function of the median regression (i.e., quantile regression

at the median). By using q > 1, we aim to combine the information from multiple quantiles to improve the

estimation of αi.

Minimizing (5) yields (α̂i1, ...α̂iq, β̂
CQR
i ), and the CQR estimator for αi is defined as

α̂CQR
i =

1

q

q∑
k=1

α̂ik. (6)

Theorem 1. Under the regularity conditions provided in the Appendix, as T → ∞:

√
T (α̂CQR

i − αi)
d→ N

(
0,

1

q2
e′q(S

−1
ϵi ΣS−1

ϵi )11eq

)
(7)

where eq is the q × 1 vector of ones, (S−1
ϵi ΣS−1

ϵi )11 is the upper-left q × q submatrix of S−1
ϵi ΣS−1

ϵi , and Sϵi

and Σ are (q + L)× (q + L) dimensional matrices whose expressions are provided in the Appendix.

Proof. See the Appendix, where the regularity conditions are also presented.

Theorem 1 shows that α̂CQR
i is asymptotically normally distributed, and its asymptotic variance depends

on the error distribution in the i-th equation. At first glance, the variance expression in Theorem 1 may

appear messy, yet it nests two well-known results as we discuss in the remarks below, whose proof is also

provided in the Appendix.

2.2.1 Remark 1

When q = 1, α̂CQR
i reduces to the intercept estimator of the median regression. Theorem 1 therefore nests

the well-known result for the median regression, for which S−1
ϵi ΣS−1

ϵi reduces to:

S−1
ϵi ΣS−1

ϵi =
1

4f2
ϵi(0)

 1 E(Xt)
′

E(Xt) E(XtX
′
t)


−1

, (8)

whose upper-left element is the asymptotic variance of the intercept estimator, while the lower-right L× L

submatrix is the asymptotic variance of the slope estimator. See, e.g., Koenker (2005). Under symmetric

error distributions, their mean and median coincide, which further implies that α̂CQR
i converges to αi of the

mean regression.
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2.2.2 Remark 2

Theorem 1 also nests the asymptotic behavior of β̂CQR
i in Zou and Yuan (2008). These authors consider a

single linear equation with E(Xt) = 0, so S−1
ϵi ΣS−1

ϵi becomes block-diagonal:

S−1
ϵi ΣS−1

ϵi =



τ11
f2
ϵi
(ci1)

...
τ1q

fϵi (ci1)fϵi (ciq)
0

...
. . .

...
...

τq1
fϵi (ciq)fϵi (ci1)

...
τqq

f2
ϵi
(ciq)

0

0 ... 0 [E(XtX
′
t)]

−1
∑q

k=1

∑q

k′=1
τkk′

(
∑q

k=1 fϵi (cik))
2


, (9)

with cik = F−1
ϵi (τk), and τkk′ = min(τk, τk′) − τkτk′ . The lower-right L × L submatrix of S−1

ϵi ΣS−1
ϵi is the

asymptotic variance of the slope estimator provided by Zou and Yuan (2008) (see their Theorem 2.1):

√
T (β̂CQR

i − βi)
d→ N

(
0, [E(XtX

′
t)]

−1

∑q
k=1

∑q
k′=1 τkk′

(
∑q

k=1 fϵi(cik))
2

)
. (10)

Unlike Zou and Yuan (2008), we focus on αi instead of βi, so the upper-left q × q submatrix of S−1
ϵi ΣS−1

ϵi ,

which is the asymptotic covariance of (α̂i1, ...α̂iq), is of interest. Under E(Xt) = 0, Theorem 1 reduces to:

√
T (α̂CQR

i − αi)
d→ N

(
0,

1

q2

q∑
k=1

q∑
k′=1

τkk′

fϵi(cik)fϵi(cik′)

)
. (11)

Since E(Xt) = 0 is not imposed in (1), (7) instead of (11) provides the limit behavior of α̂CQR
i in our setting.

2.3 CQR-based testing of alphas

For N > 1 equations in (1), we denote the CQR estimator of alphas by α̂CQR = (α̂CQR
1 , α̂CQR

2 , ..., α̂CQR
N )′,

where each α̂CQR
i for i = 1, ..., N is described in the previous subsection. In particular, Theorem 1 provides

the asymptotic normal distribution of α̂CQR
i . For joint testing of alphas, we also need the asymptotic

covariance of α̂CQR
i and α̂CQR

j across any two equations in (1), as shown in Theorem 2 below.

Theorem 2. Consider α̂CQR
i and α̂CQR

j with i ̸= j, and 1 ≤ i, j ≤ N . Under the regularity conditions

provided in the Appendix, as T → ∞:

√
T

α̂CQR
i − αi

α̂CQR
j − αj

 d→ N


0
0

 ,

 1
q2 e

′
q(S

−1
ϵi ΣS−1

ϵi )11eq
1
q2 e

′
q(S

−1
ϵi ΣϵiϵjS

−1
ϵj )11eq

1
q2 e

′
q(S

−1
ϵi ΣϵiϵjS

−1
ϵj )11eq

1
q2 e

′
q(S

−1
ϵj ΣS−1

ϵj )11eq


 (12)
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where Sϵi , Sϵj , Σ, and Σϵiϵj are (q + L) × (q + L) dimensional matrices whose expressions are provided in

the Appendix.

Proof. See the Appendix.

Given that Theorem 2 provides the joint behavior of any two elements in α̂CQR = (α̂CQR
1 , α̂CQR

2 , ..., α̂CQR
N )′,

we develop a joint test for testing H0 : α = 0, as shown in Theorem 3.

Theorem 3. Under the regularity conditions provided in the Appendix and H0 : α = 0, as T → ∞:

CQR(α̂CQR) ≡ T α̂CQR′
V̂ ar(α̂CQR)−1α̂CQR d→ χ2

N (13)

where the N ×N dimensional V̂ ar(α̂CQR) is the estimated covariance matrix, whose expression is provided

in the Appendix.

Proof. See the Appendix.

The χ2
N distribution in Theorem 3 results from the asymptotic normal distribution of the N -dimensional

α̂CQR with N ≥ 1, because the quadratic form of α̂CQR makes the CQR test statistic. We note that the

GRS statistic in (2) and the CQR test statistic in (13) are not directly comparable, since they follow two

different distributions: FN,T−N−L and χ2
N , respectively. Therefore, the GRS statistic multiplied by N will

have a magnitude comparable to that of the CQR test statistic, since N · FN,T−N−L
d→ χ2

N , as T → ∞.

3 CQR for skewed error distributions

In this section, we extend the CQR approach for alpha estimation to allow for skewed error distributions.

An alternative alpha estimator denoted by α̃CQR
i , which remains consistent for estimating αi under skewed

errors, is proposed in this section. Correspondingly, Theorems 1, 2, and 3 based on α̂CQR
i in Section 2 are

updated to Theorems 4, 5, and 6 based on α̃CQR
i in this section, respectively.

3.1 Construction of α̃CQR
i

Recall that Equation (5) yields a CQR estimator β̂CQR
i for the regression slope βi, whose consistency and

asymptotic normality are established in Zou and Yuan (2008). Given αi = E(Yit) − E(Xt)
′βi in the i-th

equation, we can construct the alpha estimator α̃CQR
i by using β̂CQR

i :

α̃CQR
i = µ̂Yi

− µ̂′
X β̂CQR

i (14)
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with µ̂Yi =
1
T

∑T
t=1 Yit, and µ̂X = 1

T

∑T
t=1 Xt. The least squares counterpart of α̃CQR

i is α̂LS
i , which can be

similarly written as:

α̂LS
i = µ̂Yi

− µ̂′
X β̂LS

i (15)

where β̂LS
i is the ordinary least squares estimator for βi. While β̂CQR

i tends to be more efficient than β̂LS
i

under non-normal regression errors (see Zou and Yuan (2008)), the comparison of (14) and (15) indicates

that α̃CQR
i can also outperform α̂LS

i .

Unlike α̂CQR
i in (6), α̃CQR

i constructed in (14) does not require regression errors to be symmetrically

distributed. This is due to the fact that the consistency of β̂CQR
i does not require the symmetry condition as

shown by Zou and Yuan (2008). Therefore, α̃CQR
i is valid for conducting inference on alphas under skewed

error distributions, for which we provide further details next.

3.2 Testing of alphas by using α̃CQR
i

Based on α̃CQR
i , Theorems 4, 5, and 6 below are the counterparts of Theorems 1, 2, and 3 based on α̂CQR

i ,

respectively. In particular, Theorem 4 provides the limiting distribution of α̃CQR
i . Given that β̂CQR

i , as well

as µ̂Yi
and µ̂X , is asymptotically normally distributed under regularity conditions, the limiting distribution

of α̃CQR
i in Theorem 4 can be derived by the delta method.

Theorem 4. Under the regularity conditions provided in the Appendix, as T → ∞:

√
T (α̃CQR

i − αi)
d→ N

(
0, E(Xt)

′(S−1
ϵi ΣS−1

ϵi )22E(Xt) + var(ϵit)
)

(16)

where (S−1
ϵi ΣS−1

ϵi )22 is the lower-right L× L submatrix of S−1
ϵi ΣS−1

ϵi in Theorem 1.

Proof. See the Appendix.

Theorem 5 provides the asymptotic covariance of any two elements in α̃CQR = (α̃CQR
1 , α̃CQR

2 , ..., α̃CQR
N )′

for estimating the N × 1 vector of alphas.

Theorem 5. Consider α̃CQR
i and α̃CQR

j with i ̸= j, and 1 ≤ i, j ≤ N . Under the regularity conditions

provided in the Appendix, as T → ∞, the covariance of
√
T (α̃CQR

i − αi) and
√
T (α̃CQR

j − αj) converges to:

E(Xt)
′(S−1

ϵi ΣϵiϵjS
−1
ϵj )22E(Xt) + cov(ϵit, ϵjt), where (S−1

ϵi ΣϵiϵjS
−1
ϵj )22 is the lower-right L × L submatrix of

S−1
ϵi ΣϵiϵjS

−1
ϵj in Theorem 2.

Proof. See the Appendix.

Theorem 6 develops a joint test for testing H0 : α = 0 by using the quadratic form of α̃CQR.
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Theorem 6. Under the regularity conditions provided in the Appendix and H0 : α = 0, as T → ∞:

CQR(α̃CQR) ≡ T α̃CQR′
V̂ ar(α̃CQR)−1α̃CQR d→ χ2

N (17)

where the N ×N dimensional V̂ ar(α̃CQR) is the estimated covariance matrix, whose expression is provided

in the Appendix.

Proof. See the Appendix.

3.3 α̃CQR
i or α̂CQR

i for spanning tests

As α̃CQR
i remains consistent under skewed error distributions, it might be tempting to conclude that we

should just choose α̃CQR
i over α̂CQR

i for practical purposes. The comparison of (14) and (15), however,

suggests that the performance of α̃CQR
i depends on the magnitude of the mean of regressors, since β̂CQR

i is

multiplied by µ̂X in (14). When µ̂X is tiny, α̃CQR
i would effectively become similar to α̂LS

i . In the limit case

that E(Xt) = 0, α̃CQR
i and α̂LS

i are asymptotically equivalent. This provides the reason that α̃CQR
i is not

always a better choice than α̂CQR
i under symmetric error distributions.

Put differently, when error distributions are symmetric, α̂CQR
i can outperform α̃CQR

i , since α̂CQR
i uses

the symmetry condition while α̃CQR
i does not. On the other hand, when error distributions are asymmetric,

it is proper to use α̃CQR
i if the purpose is to consistently estimate alphas of the mean regression.3

For spanning tests considered in our later empirical study, however, the purpose is to evaluate whether

existing factors span tested factors, for which the GRS test has been commonly adopted. We will thus attach

more weight to the test outcome based on α̂CQR
i , for the following reasons. Firstly, the symmetry condition,

which is also imposed in Kai, Li, and Zou (2010) and Huang and Zhan (2022), is weaker than and nested

by the normal distributional assumption of the GRS test. Secondly, skewed regression errors may indicate a

model specification problem in spanning tests. For example, if a skewed factor Yit leads to skewed errors in

the i-th equation, then it indicates that Yit is not fully spanned by Xt. In this scenario, we would wish to

signal that Yit is not spanned by Xt, while accepting H0 : α = 0 would lead to a misleading conclusion. As

for the GRS test, we therefore impose the symmetry condition in spanning tests, while acknowledging that

the rejection of H0 : α = 0 could occur due to: (i) α ̸= 0 when ϵt is symmetric; or (ii) ϵt is asymmetric.

Both (i) and (ii) indicate the possibility that Yit is not fully spanned by Xt, so rejecting H0 : α = 0 due to

either (i) or (ii) is practically meaningful for the purpose of spanning tests.

3Under skewed error distributions, however, quantile regression is often chosen over mean regression, since mean regression
estimates are sensitive to skewed errors. This is similar to the view that median, not mean, is a preferred measure of central
location when data are skewed.
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4 Simulation

In this section, we conduct a simulation study to compare the GRS approach with the CQR-based approach

for evaluating alphas. Since the difference of these two approaches is driven by the least squares estimator

versus the CQR estimator for estimating alphas, we also illustrate the performance of these two types of

estimators under a variety of data generating processes.

4.1 α̂LS
i vs. α̂CQR

i

We start by comparing the least squares estimator α̂LS
i with the CQR estimator α̂CQR

i .

For our data generating processes of (1), we calibrate Xt to the market factor, and Xt ∼ N(µX ,ΩX),

where µX and ΩX are calibrated to the excess market return data we use for the empirical study in the later

Section 5. Similarly, the betas are also calibrated to their estimated empirical counterparts. The value of

alphas is set to zero under the null hypothesis H0 : α = 0, and is non-zero for power analysis. The error

distributions we draw ϵt from play a key role in our simulation study, and we calibrate the variance of ϵt to

the residual variance we observe in the time-series regression of the size and book-to-market sorted portfolios

on the market factor.

For a single regression equation considered in this subsection, we set αi = 0, and calibrate βi to the

average value of betas when we regress the twenty-five size and book-to-market sorted portfolios on the

market factor. The error ϵit is drawn from four non-normal distributions taken from Kai, Li, and Zou (2010)

as well as Huang and Zhan (2022), respectively, whose variance is then re-scaled to mimic the variance of

residuals we observe in the regression described above. With the simulated data, we repeatedly conduct the

least squares estimation and the CQR estimation of αi. The reported distributions of α̂LS
i (solid black) and

α̂CQR
i (dashed blue) in Figure 1 result from 5000 Monte Carlo replications with the sample size T = 500.4

The comparison of α̂LS
i vs. α̂CQR

i in Figure 1 for four non-normal distributions shows the efficiency

gain of using the CQR estimator over the least squares estimator. Since the true αi is set to zero, Figure

1 shows that the CQR estimator for αi (dashed blue) is more concentrated around zero, compared to the

least squares estimator (solid black). In addition, Figure 1 shows that the efficiency gain of using α̂CQR
i over

α̂LS
i could be small or big, depending on which non-normal distribution is employed in the data generating

process. All these findings are consistent with Theorem 1 and the sizeable CQR literature (see, e.g., Zou

and Yuan (2008), Kai, Li, and Zou (2010), and Huang and Zhan (2022)), which emphasize the advantage of

using the CQR estimator under non-normality.

4Figure A1 in the Appendix sets T = 100 to show that the CQR estimator performs similarly well under relatively small
sample sizes.
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Figure 1: Distributions of α̂LS
i and α̂CQR

i under nonnormalities
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(c) 0.95N(0, 1) + 0.05N(0, 32)
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(d) 0.95N(0, 1) + 0.05N(0, 102)
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Notes: The true value of αi is zero in the data generating process of Yit = αi+β′
iXt+ϵit. The solid black line

is the simulated density of the least squares estimator α̂LS
i , while the dashed blue line is the simulated density

of the CQR estimator α̂CQR
i . Xt ∼ N(µX ,ΩX), and µX , ΩX , βi are all calibrated to data. ϵit is drawn from

non-normal distributions taken from Kai, Li, and Zou (2010) as well as Huang and Zhan (2022): (a) Laplace;
(b) t-distribution with 3 degrees of freedom; (c) 0.95N(0, 1) + 0.05N(0, 32); (d) 0.95N(0, 1) + 0.05N(0, 102).
The variance of ϵit is then re-scaled to match empirical data. The sample size T is 500, while the number of
Monte Carlo replications is 5000.
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Table 1: Comparison of α̂LS
i and α̂CQR

i when αi = 0

α̂LS
i α̂CQR

i

mean s.d. |α̂i| mean s.d. |α̂i|
Panel A: T = 100

(a) Laplace -0.0026 0.3118 0.2484 -0.0045 0.2819 0.2230

(b) t-distribution with 3 degrees of freedom -0.0012 0.3093 0.2477 -0.0056 0.2541 0.2000

(c) 0.95N(0, 1) + 0.05N(0, 32) 0.0010 0.3151 0.2526 0.0004 0.2984 0.2377

(d) 0.95N(0, 1) + 0.05N(0, 102) 0.0024 0.3131 0.2567 0.0012 0.1820 0.1379

(e) N(0, 1) 0.0048 0.3159 0.2515 0.0042 0.3270 0.2604

Panel B: T = 500

(a) Laplace -0.0002 0.1374 0.1093 0.0003 0.1219 0.0971

(b) t-distribution with 3 degrees of freedom -0.0003 0.1370 0.1096 -0.0002 0.1053 0.0834

(c) 0.95N(0, 1) + 0.05N(0, 32) -0.0024 0.1384 0.1111 -0.0021 0.1288 0.1031

(d) 0.95N(0, 1) + 0.05N(0, 102) -0.0009 0.1397 0.1125 -0.0011 0.0665 0.0528

(e) N(0, 1) -0.0007 0.1395 0.1116 -0.0004 0.1456 0.1165

Notes: For the least squares and CQR estimators α̂LS
i and α̂CQR

i , this table reports their mean and standard
deviations (s.d.) in the settings of Figure 1 and Figure A1 in the Appendix. |α̂i|, the mean absolute value
of estimated alphas, is also reported. The true value of αi is zero in the data generating process of Yit =
αi + β′

iXt + ϵit. Xt ∼ N(µX ,ΩX), and µX , ΩX , βi are all calibrated to data. ϵit is drawn from: (a) Laplace;
(b) t-distribution with 3 degrees of freedom; (c) 0.95N(0, 1) + 0.05N(0, 32); (d) 0.95N(0, 1) + 0.05N(0, 102);
(e) N(0, 1). The variance of ϵit is then re-scaled to match the residual variance observed from data. The
sample size T is 100 (Panel A) or 500 (Panel B), while the number of Monte Carlo replications is 5000.
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The findings in Figure 1 are further summarized in Table 1, where we report the simulated mean and

standard deviations of the least squares and CQR estimators under four non-normal error distributions as

Cases (a)(b)(c)(d). To facilitate comparison, we also consider the normal distribution Case (e) in Table 1.

In addition, the mean absolute value of estimated alphas denoted by |α̂i|, a metric commonly used for model

comparison, is also reported.

For the simulated mean values of α̂LS
i and α̂CQR

i , Table 1 shows that they are all around the true value

of αi, which is set to zero in the data generating process. Thus, the tiny mean values of α̂LS
i and α̂CQR

i in

Table 1 indicate that both estimators appear to have negligible bias.

For the standard deviations of α̂LS
i and α̂CQR

i , however, Table 1 documents their sizeable differences.

In particular, under the normal distribution in Table 1 Case (e), the standard deviation of α̂LS
i is slightly

smaller than that of α̂CQR
i . This finding should not be surprising, since α̂LS

i is the efficient estimator under

normally distributed errors. Yet the difference in standard deviations between α̂LS
i and α̂CQR

i in Case (e)

appears minor, so using α̂CQR
i in the normal case does not appear to suffer too much efficiency loss. On the

other hand, under the four non-normal distributions in Table 1 Cases (a)(b)(c)(d), it is clear that α̂CQR
i is

now associated with smaller values for its standard deviation than those of α̂LS
i . Most notably in Case (d)

with T = 500, the standard deviation of α̂CQR
i , 0.0665, is only about half as large as that of α̂LS

i , 0.1397.

The findings above are also reflected by |α̂i| reported in Table 1. Since the true αi is set to zero, we

expect that a better estimator for αi is associated with smaller |α̂i|. For the non-normal Cases (a)(b)(c)(d)

in Table 1, the reported values of |α̂i| show that α̂CQR
i does much better than α̂LS

i , especially in Case (d).

On the other hand, α̂LS
i only slightly outperforms α̂CQR

i in the normal Case (e).

The existing asset pricing studies widely use the magnitude of estimated alphas for model evaluation and

model comparison; see, e.g., Fama and French (2015, 2016, 2017, 2018). The findings presented in Figure 1

and Table 1 therefore highlight the relevance of the CQR approach for asset pricing, since it can potentially

provide more accurate alpha estimates.

4.2 GRS vs. the CQR-based test

The GRS test is based on the least squares estimator of alphas, which is not as efficient as the CQR estimator

under non-normality as we observe in Figure 1. Therefore, it is natural to expect that the CQR-based test

for testing zero alphas can exhibit more power than the GRS test, for which we present the simulated power

curves in Figure 2.

For convenience of our power analysis, we let alphas gradually deviate from zero, and we set α ∝ 1 when

it is nonzero. Put differently, we impose that each αi deviates from zero in the same manner for i = 1, ..., N
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Figure 2: Power comparison of GRS and CQR for testing H0 : α = 0 at the 5% level
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(b) Non-normal
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Notes: The solid black line is the simulated power curve of the GRS test for testing H0 : α = 0 at the
5% significance level, while the dashed blue line is the simulated power curve of the CQR-based test. The
benchmark 5% line (black dash-dotted) is also provided to illustrate the 5% size at H0 : α = 0. For the data
generating process of (1), Xt ∼ N(µX ,ΩX), and µX , ΩX , βi are all calibrated to the regression of the twenty-
five size and book-to-market sorted portfolios on the market factor. For (a) Normal: ϵt = (ϵ1t, ϵ2t, ..., ϵNt)

′

is drawn from a joint normal distribution whose covariance is calibrated to the residual covariance. For
(b) Non-normal: each element of ϵt = (ϵ1t, ϵ2t, ..., ϵNt)

′ is drawn from 0.95N(0, 1) + 0.05N(0, 102), and the
covariance of ϵt is then re-scaled to match the residual covariance. α is set to zero at the null, and α ∝ 1
under the alternative, so the scalar alpha value makes the horizontal line in this figure. The number of test
assets N is 25, and the sample size T is 500. The power curves result from the average of 5000 Monte Carlo
replications.
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to simplify the simulation study. To generate the power curves in Figure 2, we set N = 25 and T = 500,

while the level of significance is 5%.

For the joint distribution of ϵt = (ϵ1t, ϵ2t, ..., ϵNt)
′ in the data generating process, we consider two cases.

In the first case for Figure 2(a), we simulate ϵt from a multivariate normal distribution, whose covariance is

calibrated to the residual covariance in the time-series regression of the twenty-five size and book-to-market

sorted portfolios on the market factor. In the second case for a non-normal distribution in Figure 2(b),

each ϵit is firstly drawn from the 0.95N(0, 1) + 0.05N(0, 102) distribution we used for Figure 1(d), where the

difference between the least squares estimator and the CQR estimator appears sizeable. We then re-scale

the covariance of ϵt = (ϵ1t, ϵ2t, ..., ϵNt)
′ so that it is also calibrated to the residual covariance we observe

from data. The power curves of the GRS test and the CQR-based test in Figure 2 are then generated by

using the simulated data to test H0 : α = 0 under a sequence of values of α.

Figure 2(a) shows that the GRS test is (slightly) more powerful than the CQR-based test under normally

distributed errors in the data generating process. Both tests, however, reject H0 : α = 0 with the probability

near the nominal 5% level at α = 0, so they are size-correct tests. As α moves away from zero, both the

GRS test and the CQR-based test increasingly reject H0 : α = 0. The GRS test is known to be a most

powerful test under the imposed normal distribution, so its power curve (solid black) is overall above the

power curve of the CQR-based test (dashed blue).

In contrast with Figure 2(a), Figure 2(b) shows that the GRS test is less powerful than the CQR-based

test under the non-normal distribution imposed in the data generating process. Both tests, however, still

reject H0 : α = 0 with the probability close to the nominal 5% level at α = 0, so they remain asymptotically

size-correct. Yet the GRS power curve (solid black) is now below the power curve of the CQR-based test

(dashed blue) in Figure 2(b).

The comparison of Figure 2(a) and Figure 2(b) suggests that it can be practically useful to use the

CQR-based approach. If regression errors are normal, then using the CQR-based approach does not appear

to suffer too much power loss. On the other hand, if regression errors are non-normal, then using the

CQR-based approach can have relatively larger power gains.

4.3 Empirical residuals for simulating skewed errors and α̃CQR
i

In addition to the well-known distributions previously listed in Table 1, which aim to mimic various error

features that could go beyond asset pricing, we further use the empirical distribution of residuals for the

simulation study conducted in this subsection. More specifically, we just take the residuals from the spanning

regression considered in our later empirical study, and repeatedly draw regression errors from their empirical
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Figure 3: Comparison of α̂LS
i , α̂CQR

i and α̃CQR
i using empirical residuals for simulation
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(c) Symmetric errors, enlarged E(Xt)
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Notes: The true value of αi is zero in the data generating process of Yit = αi + β′
iXt + ϵit. The solid

black line is the simulated density of the least squares estimator α̂LS
i . The dashed blue line is the simulated

density of the CQR estimator α̂CQR
i . The dotted red line is the simulated density of the CQR estimator

α̃CQR
i . Xt ∼ N(µX ,ΩX), and µX , ΩX , βi for (a)(b) are all calibrated to data, while in (c)(d), µX is

scaled by 5 to make it larger. ϵit is drawn from the empirical distribution of the spanning regression
residuals considered in the later Section 5. For (a)(c): the empirical distribution is made symmetric by
incorporating the positive/negative mirror image of residuals. For (b)(d): the empirical distribution directly
results from residuals, so it is asymmetric (skewed). The sample size T is 500, while the number of Monte
Carlo replications is 5000.
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distribution. Given that the empirical distribution is not perfectly symmetric, it provides a skewed setting

which helps illustrate the performance of α̃CQR
i . To facilitate the comparison of α̃CQR

i with α̂CQR
i as well

as α̂LS
i in various scenarios, we also consider a symmetric setting. This is achieved by making the empirical

distribution of residuals symmetric through incorporating the positive/negative mirror image of the residuals.

Furthermore, in order to emphasize that the magnitude of E(Xt) affects the performance of α̃CQR
i , a setting

with enlarged E(Xt) is also simulated. The resulting performances of α̂LS
i , α̂CQR

i , and α̃CQR
i are presented

in Figure 3 for four scenarios, depending on whether error distributions are symmetric, and whether E(Xt)

is enlarged.

Figure 3(a) presents the distributions of α̂LS
i , α̂CQR

i , and α̃CQR
i when regression errors are drawn from a

symmetric but non-normal distribution. It shows that all three estimators are centered around the true zero

alpha, while the two CQR estimators α̂CQR
i and α̃CQR

i are more concentrated, compared to the least squares

estimator α̂LS
i . More importantly, Figure 3(a) also shows that α̂CQR

i performs better than α̃CQR
i . All these

findings are consistent with the discussions in the previous Section 3, making α̂CQR
i the recommended choice

under symmetric but non-normal regression errors.

Figure 3(b) is generated under asymmetric (skewed) regression errors. It shows that α̃CQR
i remains

centered around zero, while α̂CQR
i does not, i.e., its distribution is slightly shifted towards the right of

zero. Thus, α̃CQR
i can outperform α̂CQR

i if regression errors are skewed. Both Figure 3(a) and Figure 3(b),

however, show that the difference between α̃CQR
i and α̂LS

i can be minor. This minor difference occurs when

E(Xt) is not large, since the performance of α̃CQR
i depends on the magnitude of E(Xt) as explained in

Section 3. For Figure 3(c) and Figure 3(d), we therefore enlarge E(Xt) (scaled by 5) in the data generating

process to compare with Figure 3(a) and Figure 3(b), respectively.

As E(Xt) becomes larger, Figures 3(c)(d) show that the difference between α̃CQR
i and α̂LS

i is more visible.

For instance, in Figure 3(c), α̃CQR
i and α̂CQR

i almost coincide, both of which clearly outperform α̂LS
i . Similar

to Figure 1, Figure 3 overall shows that the least squares estimator α̂LS
i may not be efficient, while the CQR

approach can provide an alternative choice. While the advantage of using α̃CQR
i is minor under possibly

small E(Xt), α̂
CQR
i becomes appealing especially under symmetric errors (or errors with minor skewness).

The estimators presented in Figure 3 lead to different tests for testing H0 : α = 0 with different power,

as shown by Figure A2 in the Appendix. Like Figure 2, Figure A2 also suggests that the CQR test using

α̂CQR
i can have more power than the GRS test, so we relegate the figure to the Appendix.5

5Figure A2 in the Appendix is consistent with Theorems 1-6, and it also carries the following messages: (i) The GRS test

and its asymptotic χ2 counterpart are found to perform similarly in large samples; (ii) The CQR test using α̃CQR
i has slightly

more power than the GRS test, unless E(Xt) is large; (iii) The CQR test using α̂CQR
i appears most powerful, yet its size at

H0 : α = 0 is a bit distorted under asymmetric errors (see Figure A2(b)). This size distortion is minor, when compared to the
large power gains under α ̸= 0; in addition, it helps signal that the corresponding spanning regression is possibly misspecified,
since regression errors are skewed.
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5 Application

In this section, we contrast the commonly used GRS test with the proposed CQR-based test in an empirical

study. The purpose is to investigate whether using the CQR-based test instead of the GRS test could cause

any meaningful difference in practice. To this end, we explore whether the q-factor model of Hou, Xue, and

Zhang (2015) subsumes the six-factor model of Fama and French (2018).

Zhang (2020) states that “... despite having two fewer factors, the Hou-Xue-Zhang q-factor model fully

subsumes the Fama–French six-factor model, including UMD.” Similarly, the abstract of Hou, Mo, Xue, and

Zhang (2019) states: “In spanning tests, the q-factor model largely subsumes the Fama–French five- and six-

factor models ...” These statements, however, are largely based on their GRS test outcomes for evaluating

alphas in spanning regressions, which we examine by using the CQR approach.

5.1 Data

The six factors of Fama and French (2018) include: Mkt-RF (market), SMB (size), HML (value), RMW

(profitability), CMA (investment), and UMD (momentum), which nest those in the three-factor model of

Fama and French (1993), the four-factor model of Carhart (1997), and the five-factor model of Fama and

French (2015). On the other hand, the q-factor model of Hou, Xue, and Zhang (2015) uses only four factors:

R MKT (market), R ME (size), R IA (investment), and R ROE (return on equity). More recently, Hou,

Mo, Xue, and Zhang (2021) augment the q-factor model with the additional R EG (expected growth) to

construct the q5 model. The data of Fama and French (2018) factors we use are downloaded from Kenneth

R. French’s online data library, while the data of q factors are from https://global-q.org. Overall, we

consider eleven factors as presented in Table 2.

Table 2 provides the summary statistics as well as correlation coefficients of the eleven factors over

January 1967 to December 2022, so T = 672. It is well known that the Fama and French (2018) factors and

q factors are often closely related. For example, the two market factors (Mkt-RF vs. R MKT ) are almost

identical, so their correlation coefficient is rounded to 1 in Panel B of Table 2. Similarly, the two size factors

(SMB vs. R ME) also have a large correlation coefficient 0.97, while the two investment factors (CMA

vs. R IA) have the correlation coefficient 0.92. Such large correlations, however, do not appear for HML,

RMW , UMD. In particular, UMD stands out as its largest correlation coefficient 0.49 with q factors is

much smaller, compared to the counterparts of the other Fama and French (2018) factors with q factors

(Mkt-RF : 1; SMB: 0.97; HML: 0.68; RMW : 0.66; CMA: 0.92). Therefore, it is natural to explore

whether UMD (and similarly, but to a lesser extent, HML, RMW , CMA) is fully spanned by q factors.

The skewness and kurtosis reported in Panel A of Table 2 provide the evidence that factor returns can
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Table 2: Summary statistics and correlation coefficients of factors during 1967:01 – 2022:12

Panel A: Summary statistics

Mkt-RF SMB HML RMW CMA UMD R MKT R ME R IA R ROE R EG

mean 0.56 0.21 0.31 0.30 0.32 0.62 0.56 0.27 0.40 0.53 0.78

s.d. 4.59 3.05 3.04 2.26 2.08 4.27 4.59 3.05 2.04 2.60 2.05

skewness -0.49 0.37 0.13 -0.29 0.36 -1.28 -0.49 0.60 0.36 -0.80 -0.02

(p-val) (.00) (.00) (.17) (.00) (.00) (.00) (.00) (.00) (.00) (.00) (.81)

kurtosis 4.61 6.13 5.17 13.89 4.25 12.62 4.61 7.92 4.75 8.31 6.73

(p-val) (.00) (.00) (.00) (.00) (.00) (.00) (.00) (.00) (.00) (.00) (.00)

ks-stat 0.054 0.049 0.069 0.089 0.041 0.107 0.054 0.050 0.033 0.072 0.051

(p-val) (.04) (.08) (.00) (.00) (.21) (.00) (.04) (.07) (.44) (.00) (.06)

ck-stat 0.092 0.278 0.857 0.842 0.529 1.641 0.049 0.176 0.140 0.284 0.300

(p-val) (.20) (.47) (.00) (.00) (.04) (.00) (.93) (.26) (.88) (.42) (.44)

Panel B: Correlation coefficients

Mkt-RF 1.00

SMB 0.28 1.00

HML -0.22 -0.03 1.00

RMW -0.18 -0.36 0.11 1.00

CMA -0.38 -0.09 0.69 0.00 1.00

UMD -0.18 -0.09 -0.21 0.08 -0.01 1.00

R MKT 1.00 0.28 -0.22 -0.18 -0.38 -0.18 1.00

R ME 0.27 0.97 0.02 -0.36 -0.04 -0.05 0.27 1.00

R IA -0.35 -0.14 0.68 0.08 0.92 0.02 -0.35 -0.10 1.00

R ROE -0.21 -0.39 -0.13 0.66 -0.05 0.49 -0.21 -0.32 0.05 1.00

R EG -0.43 -0.44 0.04 0.38 0.20 0.36 -0.43 -0.39 0.19 0.53 1.00

Notes: Panel A reports the mean, standard deviation (s.d.), skewness, and kurtosis of factor returns. The
p-value for skewness results from testing the null of zero, while the p-value of kurtosis results from testing
the null of 3 or less. In addition, Panel A reports the ks-stat and its associated p-value from the Kolmogorov-
Smirnov normality test. A large ks-stat leads to a small p-value to reject the null of a normal distribution.
Panel A also reports the conditional Kolmogorov test statistic (ck-stat) of Andrews (1997) and its associated
p-value: for each of the Fama and French (2018) factors, the null is that its distribution conditional on the
four factors in the q-factor model is normal; on the other hand, for each of the q factors, the null is that
its distribution conditional on the six factors in the Fama and French (2018) model is normal. The p-value
associated with ck-stat results from 10000 bootstrap replications, since ck-stat is not nuisance parameter-free.
Fama and French (2018) use six factors: Mkt-RF , SMB, HML, RMW , CMA, UMD. The q-factor model
of Hou, Xue, and Zhang (2015) uses four factors: R MKT , R ME, R IA, R ROE, while Hou, Mo, Xue,
and Zhang (2021) add R EG to the q-factor model. Panel B reports the correlation coefficients of factor
returns. The sample contains monthly data starting from January 1967 to December 2022 with T = 672,
which are available from Kenneth R. French’s online data library and https://global-q.org.
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be substantially non-normal. For a normal distribution, the skewness is 0 while the kurtosis is 3. Overall,

the reported values for skewness and kurtosis are quite different from the normal benchmarks, as reflected

by their associated small p-values.

It is worth noting that the momentum factor denoted by UMD also stands out in Panel A of Table 2,

where we report the Kolmogorov-Smirnov normality test statistic (ks-stat), as well as its associated p-value.

Specifically, we standardize each factor, and then compare its empirical distribution after standardization

with the standard normal distribution. The reported Kolmogorov-Smirnov normality test statistic just

reflects the difference in c.d.f. of these two distributions. A large Kolmogorov-Smirnov test statistic, together

with a small p-value, indicates that the distribution of factor returns is substantially different from a normal

distribution. Out of the eleven factors listed in Table 2, we can thus reject the null of a normal distribution

for nine factors at the 10% level, for six factors at the 5% level, and for four factors at the 1% level. Among

all these factors, UMD has the largest Kolmogorov-Smirnov test statistic, and thus the smallest p-value, so

its distribution is substantially different from a normal distribution.

5.1.1 Conditional Kolmogorov test

A subtle point is worth emphasizing: we are motivated by possibly non-normal regression errors, not factors

themselves. In other words, non-normal factor distributions do not necessarily imply that their regression

errors are also non-normal.6 Instead of the distribution of factor returns themselves, the distribution of their

regression errors in spanning tests is more relevant for the purpose of this paper. Therefore, we use the

conditional Kolmogorov test proposed by Andrews (1997) to test whether the error distribution in spanning

regressions is normal. The test outcome is presented in Panel A of Table 2, where the test statistic ck-stat

and its associated p-value are reported.

Specifically, for each of the six Fama and French (2018) factors such as UMD, we consider the null

hypothesis that its distribution conditional on the four factors in the q-factor model is normal. On the other

hand, for each of the q factors, the null is that its distribution conditional on the six factors in the Fama and

French (2018) model is normal. The conditional Kolmogorov test is conducted, whose test statistic depends

on nuisance parameters. Thus, its reported p-value results from bootstrap replications; see Andrews (1997).

The conditional Kolmogorov test outcome in Panel A of Table 2 shows that UMD and similarly, HML,

RMW , CMA, lead to tiny p-values. These tiny p-values thus cast doubt on whether the error distribution

should be considered as normal as for the GRS test, when regressing UMD, as well as HML, RMW , CMA,

on the four factors of the q-factor model.

6For example, if Yit is just a noisy version of Y ∗
it, i.e., Yit = Y ∗

it + ϵit, then it is possible that ϵit is normally distributed,
while Yit and Y ∗

it are both allowed to be non-normal and skewed.
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5.2 Testing of zero alphas in spanning regressions of the q-factor model

Next, we regress the momentum factor denoted by UMD on the four factors in the q-factor model:

UMD = αUMD + βMKTR MKT + βMER ME + βIAR IA+ βROER ROE + ϵ (18)

Our interest is on testing whether αUMD = 0, for which both the GRS test and the CQR-based test can be

applied with N = 1.

As shown in Panel A of Table 3, the GRS test does not reject H0 : αUMD = 0, since its p-value 0.18

is well above the commonly used significance levels such as 5% or 10%. Therefore, the GRS test could not

rule out the possibility that UMD is spanned by the four factors in the q-factor model, which is consistent

with Zhang (2020). In contrast with the GRS test, Panel A of Table 3 shows that the CQR test using α̂CQR

can easily reject H0 : αUMD = 0. Since the CQR p-value is 0.02, we can reject the null of zero alpha at the

commonly used 5% level. Therefore, a researcher who uses the CQR-based test would conclude that UMD

is not spanned by the four factors in the q-factor model, while the GRS test leads to the opposite conclusion.

In a similar fashion as in (18), we regress CMA, RMW , and HML on the four factors in the q-factor

model, so αCMA, αRMW , and αHML are the resulting intercepts. We then jointly test whether these alphas,

together with αUMD, are equal to zero. This leads to three joint null hypotheses in Panel A of Table 3:

H0 : αCMA = αUMD = 0; H0 : αRMW = αCMA = αUMD = 0; H0 : αHML = αRMW = αCMA = αUMD = 0.

For these joint hypotheses, we report the test outcomes by both the GRS test and the CQR-based test, with

N = 2, N = 3, and N = 4, respectively.

Unlike the large GRS p-values in Panel A of Table 3, the CQR-based test yields much smaller p-values.

These CQR p-values are all below 10%, so we can reject the null of zero alphas at the 10% level for all the

considered hypotheses. Similarly, at the 5% level, we can reject three out of four hypotheses listed in Panel

A of Table 3. These findings thus cast doubt on the claim that the q-factor model of Hou, Xue, and Zhang

(2015) fully subsumes the six-factor model of Fama and French (2018). Put differently, the GRS test and

the CQR-based test lead to opposite statistical conclusions in Panel A of Table 3.

The seemingly contradictory performance of GRS and CQR in Panel A of Table 3 is mainly due to

their different alpha estimates. As shown by the mean absolute value of estimated alphas A|αi|, the CQR

approach yields larger values of A|αi| than those by GRS. In particular, the magnitude of A|αi| by CQR

is about 50% larger than the GRS counterpart when we focus solely on αUMD, as reported in the first row

of Table 3 Panel A. This finding is consistent with Table 2, where the distribution of UMD conditional

on the four q factors is substantially non-normal as indicated by the conditional Kolmogorov test. Under

non-normal regression errors, least squares and CQR could lead to substantially different alpha estimates.
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Table 3: Spanning tests by regressing Fama-French factors on q factors

GRS CQR(α̂CQR)

GRS-stat p-value A|αi| CQR-stat p-value A|αi|
Panel A: HML, RMW, CMA, UMD on q

H0 : αUMD = 0 1.78 0.18 0.203 5.61 0.02 0.307

H0 : αCMA = αUMD = 0 1.03 0.36 0.111 6.56 0.04 0.167

H0 : αRMW = αCMA = αUMD = 0 1.10 0.35 0.087 8.39 0.04 0.129

H0 : αHML = αRMW = αCMA = αUMD = 0 0.83 0.51 0.066 9.05 0.06 0.115

Panel B: HML, RMW, CMA, UMD on q5

H0 : αUMD = 0 0.07 0.79 0.043 0.01 0.92 0.013

H0 : αCMA = αUMD = 0 0.69 0.50 0.042 0.37 0.83 0.016

H0 : αRMW = αCMA = αUMD = 0 0.54 0.66 0.043 1.56 0.67 0.033

H0 : αHML = αRMW = αCMA = αUMD = 0 0.41 0.80 0.036 2.09 0.72 0.040

Notes: For GRS and CQR, this table reports their test statistics, p-values, and the mean absolute value of
estimated alphas A|αi|. The null hypothesis is that the alphas of Fama-French factors (HML, RMW, CMA,
UMD) are zero, when regressing them on q factors for Panel A, or q5 factors for Panel B. We consider the single
H0 : αUMD = 0, as well as three joint cases: H0 : αCMA = αUMD = 0; H0 : αRMW = αCMA = αUMD = 0;
H0 : αHML = αRMW = αCMA = αUMD = 0. The q-factor model uses R MKT , R ME, R IA, R ROE,
while the q5 model adds R EG to the q-factor model. The sample is from January 1967 to December 2022
with T = 672 as in Table 2.
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5.3 Testing of zero alphas in spanning regressions of the q5 model

If the four factors in the q-factor model of Hou, Xue, and Zhang (2015) do not fully span the momentum

factor, how about the q5 model of Hou, Mo, Xue, and Zhang (2021)? We therefore regress the momentum

factor denoted by UMD on the five factors of the q5 model to examine the intercept αUMD:

UMD = αUMD + βMKTR MKT + βMER ME + βIAR IA+ βROER ROE + βEGR EG+ ϵ (19)

Likewise, the CMA, RMW , HML factors are similarly considered, leading to αCMA, αRMW , and αHML

as intercepts. Test outcomes on the alphas of such factors using the q5 model are thus presented in Panel B

of Table 3, to contrast Panel A of Table 3 for the q-factor model.

For both the GRS test and the CQR-based test, Panel B of Table 3 shows that they lead to large p-values.

Therefore, we could not reject the null of zero alphas, no matter whether GRS or CQR is adopted. In other

words, neither the GRS test nor the CQR-based test has the power to rule out the possibility that the Fama

and French (2018) six-factor model is subsumed by the q5 model in our studied sample. Similar findings can

be seen from Table A1 in the Appendix, where we use a different number of quantiles for sensitivity analysis.

To sum up, the findings in Table 3 suggest that the additional expected growth factor (R EG) in the

q5 model is crucial for helping explain the momentum factor (UMD). Without R EG, the CQR-based test

rejects zero alpha for the momentum factor in Panel A of Table 3 for the q-factor model. With R EG, the

CQR-based test does not reject zero alpha for the momentum factor in Panel B of Table 3 for the q5 model.

Given that Table 2 shows a sizeable correlation (0.36) of R EG and UMD, the findings documented in Table

3 should not be surprising.

The existing asset pricing literature largely relies on the GRS approach to estimate alphas and evaluate

models. Based on the GRS test outcomes in Table 3, a researcher would thus draw a conclusion similar

to those in Zhang (2020) and Hou, Mo, Xue, and Zhang (2019): the q-factor model is sufficient to span

the Fama and French (2018) factors such as UMD, so it does not appear necessary to have the additional

expected growth factor. Yet the proposed CQR approach conveys the different message that the q-factor

model needs the expected growth factor to better explain the Fama and French (2018) factors. This clearly

shows the value of having the alternative CQR approach to accompany the GRS test, so that researchers

can assess their empirical findings with a second thought.

Lastly, we note that using the asymptotic counterpart of the GRS test does not alter our findings in Table

3; see Table A2 in the Appendix. Since our sample size T = 672 is already large, using p-values resulting from

χ2
N for the asymptotic counterpart of the GRS test does not cause any substantial difference to the p-values

we report for GRS in Table 3. Therefore, the power improvement of CQR over GRS we observe in Panel A
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of Table 3 is not caused by using FN,T−N−L or χ2
N distributions. Table A2 in the Appendix also contains

the findings based on the CQR test using α̃CQR. Since the mean of factors is generally small as reported

in Table 2, the CQR test using α̃CQR leads to similar, but mostly smaller p-values, compared to those from

the asymptotic counterpart of the GRS test in Table A2. All these findings are thus consistent with the

power comparison of tests in Figure A2. One might criticize the symmetry condition associated with the

CQR-based test conducted in Table 3. Yet the purpose of Table 3 is to contrast the CQR-based test with

the GRS test, whose normality assumption also implies the symmetry condition. When error distributions

are asymmetric (skewed), the corresponding spanning regressions are likely misspecified, so rejecting zero

alphas in this scenario helps signal that the tested factors are not fully spanned.

5.4 Further discussions

Asset pricing models, especially their linear simplifications, are approximations to reality. From this perspec-

tive, it is not surprising that the null of zero alphas can be rejected by a test with power, when accompanied

with informative data. Failure to reject zero alphas could occur, when the test itself lacks power, or the

employed samples are not sufficiently informative. Therefore, we opt not to overly interpret the test out-

comes of the GRS test or the CQR-based test, regardless of whether these outcomes are in favor of or against

researchers’ prior thoughts.

Nevertheless, given that a variety of models have been proposed in the asset pricing literature, it is

important to have econometric tools that can be used for evaluating the alphas of such models. For this

purpose, the CQR-based approach is proposed in this paper, since it is designed for non-normality in empirical

studies, while the least squares estimator for alphas and the resulting GRS test are not.

6 Conclusion

We propose the CQR-based approach to complement the popular GRS test for evaluating asset pricing

models. When regression errors are normally distributed, the least squares estimator is efficient for estimating

alphas in linear equations, and the resulting GRS test is a powerful test for jointly testing zero alphas. On

the other hand, in empirically relevant settings where regression errors are possibly non-normal, the CQR

estimator can be more efficient than the least squares estimator for estimating alphas, and consequently,

the CQR-based test can have more power than the GRS test. In our empirical study as well as simulation

experiment, we find the evidence that the CQR-based approach outperforms the GRS test in many cases of

interest.
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Appendix

A. Regularity conditions

Conditions 1-2 below are similar to the regularity conditions provided in Zou and Yuan (2008), except that

we do not require E(Xt) to be zero, i.e., regressors are not required to be centered.

Condition 1:

lim
T→∞

1

T

T∑
t=1

 1 X ′
t

Xt XtX
′
t

 =

 1 E(Xt)
′

E(Xt) E(XtX
′
t)

 ,

and the (L+ 1)× (L+ 1) matrix in the limit is positive definite.

Condition 2: The p.d.f. and c.d.f. of ϵit denoted by fϵi and Fϵi exist, and satisfy:

lim
T→∞

1

T

T∑
t=1

∫ u0+X′
tu

0

√
T (Fϵi(a+ v/

√
T )− Fϵi(a))dv =

fϵi(a)

2
(u0,u

′)

 1 E(Xt)
′

E(Xt) E(XtX
′
t)

 (u0,u
′)′

where u is the L-dimensional vector, u0 is a scalar, and fϵi(a) is a positive p.d.f. value at a.

Condition 3 below is imposed in Kai, Li, and Zou (2010); see also Huang and Zhan (2022). The symmetric

error distribution condition is to ensure that the CQR estimator α̂CQR
i converges to the intercept of the mean

regression. It is required for Theorems 1, 2, 3, but not for Theorems 4, 5, 6.

Condition 3: The regression error ϵit has a symmetric distribution.

Condition 4 below is imposed for Theorem 3 and Theorem 6, so that the covariance matrix can be

consistently estimated.

Condition 4: There exist consistent estimators for fϵi , Fϵi , and the joint c.d.f. Fϵiϵj around the q quantile

positions.

Condition 5 below is imposed for Theorems 4, 5, 6, so that the sample means are asymptotically normally

distributed.

Condition 5: A central limit theorem applies to the sample means of Yit and Xt, so that

√
T

µ̂Yi
− E(Yit)

µ̂X − E(Xt)

 d→ N


0
0

 ,

 var(Yit) cov(Yit, Xt)
′

cov(Yit, Xt) var(Xt)




with µ̂Yi
= 1

T

∑T
t=1 Yit, and µ̂X = 1

T

∑T
t=1 Xt.
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B. Notation

Sϵi and Sϵj are (q + L)× (q + L) dimensional matrices. They are defined in the same fashion, with:

Sϵi =



fϵi(ci1) fϵi(ci1)E(Xt)
′

. . .
...

fϵi(ciq) fϵi(ciq)E(Xt)
′

fϵi(ci1)E(Xt) ... fϵi(ciq)E(Xt)
∑q

k=1 fϵi(cik)E(XtX
′
t)


,

where the upper-left q× q submatrix of Sϵi is a diagonal matrix, and cik = F−1
ϵi (τk). Sϵj is similarly defined

as above by replacing i with j.

Σ is a (q + L)× (q + L) dimensional matrix:

Σ =



τ11 ... τ1q E(Xt)
′∑q

k′=1 τ1k′

...
. . .

...
...

τq1 ... τqq E(Xt)
′∑q

k′=1 τqk′

E(Xt)
∑q

k′=1 τ1k′ ... E(Xt)
∑q

k′=1 τqk′ E(XtX
′
t)
∑q

k=1

∑q
k′=1 τkk′


,

with τkk′ = min(τk, τk′)− τkτk′ , so τkk = τk(1− τk).

Similarly, Σϵiϵj is a (q + L)× (q + L) dimensional matrix:

Σϵiϵj =



τij,11 ... τij,1q E(Xt)
′∑q

k′=1 τij,1k′

...
. . .

...
...

τij,q1 ... τij,qq E(Xt)
′∑q

k′=1 τij,qk′

E(Xt)
∑q

k=1 τij,k1 ... E(Xt)
∑q

k=1 τij,kq E(XtX
′
t)
∑q

k=1

∑q
k′=1 τij,kk′


,

with τij,kk′ = Fϵiϵj (cik, cjk′)− τkτk′ , and Fϵiϵj is the joint c.d.f. of ϵit and ϵjt.

C. Proof of Theorem 1

The CQR objective function is provided by:

(α̂i1, ...α̂iq, β̂
CQR
i ) = argmin

αik,βi

q∑
k=1

T∑
t=1

ρτk (Yit − αik − β′
iXt) .
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Define:
√
T (β̂CQR

i − βi) = UT and
√
T (α̂ik − αik) = UT,k, then (UT,1, ..., UT,q,UT ) is the minimizer of

LT =

q∑
k=1

T∑
t=1

(
ρτk

(
ϵit − cik − Uk +X ′

tU√
T

)
− ρτk (ϵit − cik)

)

with cik = F−1
ϵi (τk).

Note that the identity

|r − s| − |r| = −s(1(r > 0)− 1(r < 0)) + 2

∫ s

0

[1(r ≤ t)− 1(r ≤ 0)]dt

implies

ρτ (r − s)− ρτ (r) = s(1(r < 0)− τ) +

∫ s

0

[1(r ≤ t)− 1(r ≤ 0)]dt.

We can thus rewrite LT as:

LT =

q∑
k=1

T∑
t=1

Uk +X ′
tU√

T
(1(ϵit < cik)− τk) +

q∑
k=1

T∑
t=1

∫ (Uk+X′
tU)/

√
T

0

[1(ϵit ≤ cik + v)− 1(ϵit ≤ cik)]dv

=

q∑
k=1

ZT,kUk + Z′
TU+

q∑
k=1

B
(k)
T

with

ZT,k ≡ 1√
T

T∑
t=1

(1(ϵit < cik)− τk)

ZT ≡ 1√
T

T∑
t=1

Xt[

q∑
k=1

(1(ϵit < cik)− τk)]

B
(k)
T =

T∑
t=1

∫ (Uk+X′
tU)/

√
T

0

[1(ϵit ≤ cik + v)− 1(ϵit ≤ cik)]dv.

For B
(k)
T :

E(B
(k)
T ) =

T∑
t=1

∫ (Uk+X′
tU)/

√
T

0

[Fϵi(cik + v)− Fϵi(cik)]dv

=
1

T

T∑
t=1

∫ (Uk+X′
tU)

0

√
T [Fϵi(cik +

v√
T
)− Fϵi(cik)]dv

→ fϵi(cik)

2
(Uk,U

′)

 1 E(Xt)
′

E(Xt) E(XtX
′
t)

 (Uk,U
′)′
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and its variance converges to zero (see Zou and Yuan (2008)). Thus, we can rewrite LT as:

LT
d→

q∑
k=1

ZT,kUk + Z′
TU+

q∑
k=1

fϵi(cik)

2
(Uk,U

′)

 1 E(Xt)
′

E(Xt) E(XtX
′
t)

 (Uk,U
′)′

= (ZT,1, ..., ZT,q,Z
′
T )(U1, ..., Uq,U

′)′ +
1

2
(U1, ..., Uq,U

′)Sϵi(U1, ..., Uq,U
′)′

with

Sϵi =



fϵi(ci1) fϵi(ci1)E(Xt)
′

. . .
...

fϵi(ciq) fϵi(ciq)E(Xt)
′

fϵi(ci1)E(Xt) ... fϵi(ciq)E(Xt)
∑q

k=1 fϵi(cik)E(XtX
′
t)


,

where the upper-left q × q submatrix of Sϵi is a diagonal matrix.

(UT,1, ..., UT,q,UT ) results from minimizing LT above:

(UT,1, ..., UT,q,U
′
T )

′ = −S−1
ϵi (ZT,1, ..., ZT,q,Z

′
T )

′ + op(1)

For (ZT,1, ..., ZT,q,Z
′
T )

′:

(ZT,1, ..., ZT,q,Z
′
T )

′ d→ N(0,Σ)

where

Σ =



τ11 ... τ1q E(Xt)
′∑q

k′=1 τ1k′

...
. . .

...
...

τq1 ... τqq E(Xt)
′∑q

k′=1 τqk′

E(Xt)
∑q

k′=1 τ1k′ ... E(Xt)
∑q

k′=1 τqk′ E(XtX
′
t)
∑q

k=1

∑q
k′=1 τkk′


,

with τkk′ = min(τk, τk′)− τkτk′ , so τkk = τk(1− τk).

Thus, we have:

(UT,1, ..., UT,q,U
′
T )

′ =
√
T



α̂i1 − αi1

...

α̂iq − αiq

β̂CQR
i − βi


d→ N

(
0, S−1

ϵi ΣS−1
ϵi

)
.
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Given the definition α̂CQR
i = 1

q

∑q
k=1 α̂ik, the expression above leads to:

√
T (α̂CQR

i − αi)
d→ N

(
0,

1

q2
e′q(S

−1
ϵi ΣS−1

ϵi )11eq

)
,

where αi = 1
q

∑q
k=1 αik results from the equally distributed q quantile positions and the symmetric error

distribution.

Special Case 1: If q = 1: τk = 1/2, cik = 0, τkk′ = 1/4, and

Sϵi =

 fϵi(0) fϵi(0)E(Xt)
′

fϵi(0)E(Xt) fϵi(0)E(XtX
′
t)

 , Σ =

 1
4

1
4E(Xt)

′

1
4E(Xt)

1
4E(XtX

′
t)

 .

Thus,

S−1
ϵi ΣS−1

ϵi =
1

4f2
ϵi(0)

 1 E(Xt)
′

E(Xt) E(XtX
′
t)


−1

.

Special Case 2: If E(Xt) = 0, then Sϵi and Σ are block-diagonal:

Sϵi =



fϵi(ci1) 0

. . .
...

fϵi(ciq) 0

0 ... 0
∑q

k=1 fϵi(cik)E(XtX
′
t)


,

and

Σ =



τ11 ... τ1q 0

...
. . .

...
...

τq1 ... τqq 0

0 ... 0 E(XtX
′
t)
∑q

k=1

∑q
k′=1 τkk′


.

Thus,

S−1
ϵi ΣS−1

ϵi =



τ11
f2
ϵi
(ci1)

...
τiq

fϵi (ci1)fϵi (ciq)
0

...
. . .

...
...

τq1
fϵi (ciq)fϵi (ci1)

...
τqq

f2
ϵi
(ciq)

0

0 ... 0 [E(XtX
′
t)]

−1
∑q

k=1

∑q

k′=1
τkk′

(
∑q

k=1 fϵi (cik))
2


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Theorem 2.1 of Zou and Yuan (2008) is on the lower-right L× L submatrix of S−1
ϵi ΣS−1

ϵi :

√
T (β̂CQR

i − βi)
d→ N

(
0, [E(XtX

′
t)]

−1

∑q
k=1

∑q
k′=1 τkk′

(
∑q

k=1 fϵi(cik))
2

)

while we focus on the upper-left q × q submatrix of of S−1
ϵi ΣS−1

ϵi .

D. Proof of Theorem 2

Given Theorem 1, we only need to derive the covariance expression in Theorem 2. The proof of Theorem 1

shows that, for the i-th equation:

√
T



α̂i1 − αi1

...

α̂iq − αiq

β̂CQR
i − βi


= −S−1

ϵi (ZT,1, ..., ZT,q,Z
′
T )

′ + op(1)

with ZT,k ≡ 1√
T

∑T
t=1(1(ϵit < cik)− τk), ZT ≡ 1√

T

∑T
t=1 Xt[

∑q
k=1(1(ϵit < cik)− τk)].

For the j-th equation, we thus similarly have:

√
T



α̂j1 − αj1

...

α̂jq − αjq

β̂CQR
j − βj


= −S−1

ϵj (ZT,1, ...,ZT,q,Z ′
T )

′ + op(1)

with ZT,k ≡ 1√
T

∑T
t=1(1(ϵjt < cjk)− τk), ZT ≡ 1√

T

∑T
t=1 Xt[

∑q
k=1(1(ϵjt < cjk)− τk)].

The asymptotic covariance of (ZT,1, ..., ZT,q,Z
′
T )

′ and (ZT,1, ...,ZT,q,Z ′
T )

′ is:

Σϵiϵj =



τij,11 ... τij,1q E(Xt)
′∑q

k′=1 τij,1k′

...
. . .

...
...

τij,q1 ... τij,qq E(Xt)
′∑q

k′=1 τij,qk′

E(Xt)
∑q

k=1 τij,k1 ... E(Xt)
∑q

k=1 τij,kq E(XtX
′
t)
∑q

k=1

∑q
k′=1 τij,kk′


,

with τij,kk′ = Fϵiϵj (cik, cjk′)− τkτk′ , and Fϵiϵj is the joint c.d.f. of ϵit and ϵjt.

Thus, the covariance of −S−1
ϵi (ZT,1, ..., ZT,q,Z

′
T )

′ and −S−1
ϵj (ZT,1, ...,ZT,q,Z ′

T )
′ is S−1

ϵi ΣϵiϵjS
−1
ϵj , whose
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upper-left q× q matrix is for the covariance of the estimated alphas: α̂i1, ..., α̂iq, α̂j1, ..., α̂jq. The covariance

1
q2 e

′
q(S

−1
ϵi ΣϵiϵjS

−1
ϵj )11eq in Theorem 2 thus results from using the definition of the CQR estimator: α̂CQR

i =

1
q

∑q
k=1 α̂ik, and similarly, α̂CQR

j = 1
q

∑q
k=1 α̂jk.

Since α̂CQR
i and α̂CQR

j are driven by their error terms ϵit and ϵjt, respectively, Theorem 2 involves

the joint distribution of these two error terms. It is worth noting that we do not assume the same error

distribution across equations, i.e., ϵit and ϵjt are allowed to follow different distributions.

Special Case 3: It is straightforward to verify that τij,kk′ reduces to zero if ϵit, ϵjt are independent. In

this case, Σϵiϵj reduces to a zero matrix, so the off-diagonal covariance in (12) equals zero, implying that

α̂CQR
i and α̂CQR

j are asymptotically independent. On the other hand, τij,kk′ reduces to τkk′ if i = j, so Σϵiϵj

reduces to Σ, and the off-diagonal covariance in (12) coincides with the variance on the diagonal.

Special Case 4: If we impose E(Xt) = 0, then (12) becomes:

√
T

α̂CQR
i − αi

α̂CQR
j − αj

 d→ N


0
0

 ,

 1
q2

∑q
k=1

∑q
k′=1

τkk′
fϵi (cik)fϵi (cik′ )

1
q2

∑q
k=1

∑q
k′=1

τij,kk′

fϵi (cik)fϵj (cjk′ )

1
q2

∑q
k=1

∑q
k′=1

τij,kk′

fϵi (cik)fϵj (cjk′ )
1
q2

∑q
k=1

∑q
k′=1

τkk′
fϵj (cjk)fϵj (cjk′ )


 ,

which clearly shows that the distributions of two error terms affect the joint behavior of α̂CQR
i and α̂CQR

j .

E. Proof of Theorem 3

Given that Theorem 2 establishes the joint normal distribution of alpha estimators, we only need to show

the covariance estimator V̂ ar(α̂CQR) used in Theorem 3 is consistent:

V̂ ar(α̂CQR) =


1
q2 e

′
q(Ŝ

−1
ϵ1 Σ̂Ŝ−1

ϵ1 )11eq ... 1
q2 e

′
q(Ŝ

−1
ϵ1 Σ̂ϵ1ϵN Ŝ−1

ϵN )11eq

...
. . .

...

1
q2 e

′
q(Ŝ

−1
ϵN Σ̂ϵN ϵ1 Ŝ

−1
ϵ1 )11eq ... 1

q2 e
′
q(Ŝ

−1
ϵN Σ̂Ŝ−1

ϵN )11eq

 .

We use Ŝϵi (and similarly Ŝϵj ), Σ̂, and Σ̂ϵiϵj as follows:

Ŝϵi =



f̂ϵi(ĉi1) f̂ϵi(ĉi1)
1
T

∑T
t=1 X

′
t

. . .
...

f̂ϵi(ĉiq) f̂ϵi(ĉiq)
1
T

∑T
t=1 X

′
t

f̂ϵi(ĉi1)
1
T

∑T
t=1 Xt ... f̂ϵi(ĉiq)

1
T

∑T
t=1 Xt

∑q
k=1 f̂ϵi(ĉik)

1
T

∑T
t=1 XtX

′
t


,
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Σ̂ =



τ11 ... τ1q
1
T

∑T
t=1 X

′
t

∑q
k′=1 τ1k′

...
. . .

...
...

τq1 ... τqq
1
T

∑T
t=1 X

′
t

∑q
k′=1 τqk′

1
T

∑T
t=1 Xt

∑q
k′=1 τ1k′ ... 1

T

∑T
t=1 Xt

∑q
k′=1 τqk′

1
T

∑T
t=1 XtX

′
t

∑q
k=1

∑q
k′=1 τkk′


,

and

Σ̂ϵiϵj =



τ̂ij,11 ... τ̂ij,1q
1
T

∑T
t=1 X

′
t

∑q
k′=1 τ̂ij,1k′

...
. . .

...
...

τ̂ij,q1 ... τ̂ij,qq
1
T

∑T
t=1 X

′
t

∑q
k′=1 τ̂ij,qk′

1
T

∑T
t=1 Xt

∑q
k=1 τ̂ij,k1 ... 1

T

∑T
t=1 Xt

∑q
k=1 τ̂ij,kq

1
T

∑T
t=1 XtX

′
t

∑q
k=1

∑q
k′=1 τ̂ij,kk′


,

with ĉik = F̂−1
ϵi (τk), and F̂ϵi , f̂ϵi are the estimated c.d.f. and p.d.f. based on the CQR residual estimate

ϵ̂CQR
it of ϵit, τ̂ij,kk′ = P (ϵ̂CQR

it ≤ ĉik and ϵ̂CQR
jt ≤ ĉjk′)− τkτk′ .

Since the CQR estimators of αi and βi are
√
T -consistent, the resulting residual ϵ̂CQR

it = ϵit+Op(T
−1/2).

The p.d.f. fϵi and c.d.f. Fϵi can thus be consistently estimated by f̂ϵi and F̂ϵi using residuals, which further

leads to the consistency of Ŝϵi and Σ̂ϵiϵj . The consistency of Σ̂ directly results from the first regularity

condition.

F. Proof of Theorem 4

α̃CQR
i = µ̂Yi

− µ̂′
X β̂CQR

i is a smooth function of µ̂Yi
, µ̂X , and β̂CQR

i , where µ̂Yi
, µ̂X , and β̂CQR

i are all

asymptotically normally distributed. In particular, the asymptotic variance of β̂CQR
i is (S−1

ϵi ΣS−1
ϵi )22.

Note that µ̂Yi
, µ̂X converge to E(Yit) and E(Xt) respectively, and β̂CQR

i converges to βi (see Zou and

Yuan (2008)). This implies that:

α̃CQR
i = µ̂Yi

− µ̂′
X β̂CQR

i

p→ E(Yit)− E(Xt)
′βi = αi

In addition, ∂αi

∂E(Yit)
= 1, ∂αi

∂E(Xt)
= −βi, and

∂αi

∂βi
= −E(Xt). By the delta method, the asymptotic
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variance of α̃CQR
i equals:

(1,−β′
i,−E(Xt)

′)Vµ̂Yi
,µ̂X ,β̂CQR

i
(1,−β′

i,−E(Xt)
′)′

where Vµ̂Yi
,µ̂X ,β̂CQR

i
stands for the joint covariance of µ̂Yi

, µ̂X , β̂CQR
i , which reads:

Vµ̂Yi
,µ̂X ,β̂CQR

i
=


var(Yit) cov(Yit, Xt)

′ 0

cov(Yit, Xt) var(Xt) 0

0 0 (S−1
ϵi ΣS−1

ϵi )22

 .

Completing the calculation above leads to E(Xt)
′(S−1

ϵi ΣS−1
ϵi )22E(Xt) + var(ϵit) for the asymptotic vari-

ance expression of α̃CQR
i .

G. Proof of Theorem 5

α̃CQR
i = µ̂Yi−µ̂′

X β̂CQR
i = αi+ϵ̄i−µ̂′

X(β̂CQR
i −βi), with ϵ̄i =

1
T

∑T
t=1 ϵit. Similarly, α̃CQR

j = µ̂Yj−µ̂′
X β̂CQR

j =

αj + ϵ̄j − µ̂′
X(β̂CQR

j − βj), with ϵ̄j =
1
T

∑T
t=1 ϵjt.

The proof of Theorem 2 above implies that the asymptotic covariance of β̂CQR
i − βi and β̂CQR

j −

βj is (S−1
ϵi ΣϵiϵjS

−1
ϵj )22, which further leads to the covariance expression E(Xt)

′(S−1
ϵi ΣϵiϵjS

−1
ϵj )22E(Xt) +

cov(ϵit, ϵjt) for α̃
CQR
i − αi, and α̃CQR

j − αj .

If i = j, the covariance expression E(Xt)
′(S−1

ϵi ΣϵiϵjS
−1
ϵj )22E(Xt) + cov(ϵit, ϵjt) reduces to the variance

expression E(Xt)
′(S−1

ϵi ΣS−1
ϵi )22E(Xt) + var(ϵit) in Theorem 4.

H. Proof of Theorem 6

Given the joint normal distribution of alpha estimators, we only need to show the covariance estimator

V̂ ar(α̃CQR) is consistent:

V̂ ar(α̃CQR) =


µ̂′
X(Ŝ−1

ϵ1 Σ̂Ŝ−1
ϵ1 )22µ̂X + V̂ ar(ϵ1) ... µ̂′

X(Ŝ−1
ϵ1 Σ̂ϵ1ϵN Ŝ−1

ϵN )22µ̂X + Ĉov(ϵ1, ϵN )

...
. . .

...

µ̂′
X(Ŝ−1

ϵN Σ̂ϵN ϵ1 Ŝ
−1
ϵ1 )22µ̂X + Ĉov(ϵN , ϵ1) ... µ̂′

X(Ŝ−1
ϵN Σ̂Ŝ−1

ϵN )22µ̂X + V̂ ar(ϵN )

 .

Consistency of µ̂X , Ŝϵi , Σ̂ϵiϵj , and Σ̂ is as in the proof for Theorem 3. Consistency of V̂ ar(ϵi) and Ĉov(ϵi, ϵj)

results from using the CQR residual ϵ̃CQR
it = Yit − α̃CQR

i −X ′
tβ̂

CQR
i = ϵit +Op(T

−1/2).
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I. Additional numerical and empirical results

Figure A1: Distributions of α̂LS
i and α̂CQR

i under nonnormalities, T = 100

(a) Laplace
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(b) t-distribution with 3 degrees of freedom
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(c) 0.95N(0, 1) + 0.05N(0, 32)
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(d) 0.95N(0, 1) + 0.05N(0, 102)
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Notes: See also Figure 1 in the main text. The true value of αi is zero in the data generating process of
Yit = αi + β′

iXt + ϵit. The solid black line is the simulated density of the least squares estimator α̂LS
i ,

while the dashed blue line is the simulated density of the CQR estimator α̂CQR
i . Xt ∼ N(µX ,ΩX), and

µX , ΩX , βi are all calibrated to data. ϵit is drawn from non-normal distributions taken from Kai, Li, and
Zou (2010) as well as Huang and Zhan (2022): (a) Laplace; (b) t-distribution with 3 degrees of freedom;
(c) 0.95N(0, 1) + 0.05N(0, 32); (d) 0.95N(0, 1) + 0.05N(0, 102). The variance of ϵit is then re-scaled to match
empirical data. The sample size T is 100, while the number of Monte Carlo replications is 5000.
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Figure A2: Power comparison of four tests for testing H0 : α = 0 at the 5% level

(a) Symmetric
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(b) Asymmetric

-0.5 0 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e
je

c
ti
o
n
 F

re
q
u
e
n
c
y

Notes: The solid black line is the simulated power curve of the GRS test for testing H0 : α = 0 at the 5%
significance level. The dashed blue line is the simulated power curve of the CQR-based test using α̂CQR.
The dotted green line is the simulated power curve of the asymptotic χ2 test using α̂LS . The dotted red
line is the simulated power curve of the CQR-based test using α̃CQR. The benchmark 5% line (black dash-
dotted) is also provided to illustrate the 5% size at H0 : α = 0. For the data generating process of (1),
Xt ∼ N(µX ,ΩX), and µX , ΩX , βi are all calibrated to data. For (a) Symmetric, and (b) Asymmetric, they
correspond to the settings in Figure 3. α is set to zero at the null, and α ∝ 1 under the alternative, so the
scalar alpha value makes the horizontal line in this figure. The number of test assets N is 2, and the sample
size T is 500. The power curves result from the average of 5000 Monte Carlo replications.
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Table A1: Spanning tests by regressing Fama-French factors on q factors: sensitivity analysis

GRS CQR(α̂CQR)

GRS-stat p-value A|αi| CQR-stat p-value A|αi|
Panel A: HML, RMW, CMA, UMD on q

H0 : αUMD = 0 1.78 0.18 0.203 6.79 0.01 0.333

H0 : αCMA = αUMD = 0 1.03 0.36 0.111 7.84 0.02 0.180

H0 : αRMW = αCMA = αUMD = 0 1.10 0.35 0.087 9.08 0.03 0.134

H0 : αHML = αRMW = αCMA = αUMD = 0 0.83 0.51 0.066 9.89 0.04 0.121

Panel B: HML, RMW, CMA, UMD on q5

H0 : αUMD = 0 0.07 0.79 0.043 0.08 0.77 0.039

H0 : αCMA = αUMD = 0 0.69 0.50 0.042 0.62 0.73 0.032

H0 : αRMW = αCMA = αUMD = 0 0.54 0.66 0.043 1.21 0.75 0.036

H0 : αHML = αRMW = αCMA = αUMD = 0 0.41 0.80 0.036 2.17 0.70 0.046

Notes: This table corresponds to Table 3 in the main text. While Table 3 sets q = 5 for CQR, this table
sets q = 3 (three quantiles). For GRS and CQR, this table reports their test statistics, p-values, and the
mean absolute value of estimated alphas A|αi|. The null hypothesis is that the alphas of Fama-French
factors (HML, RMW, CMA, UMD) are zero, when regressing them on q factors for Panel A, or q5 factors
for Panel B. We consider the single H0 : αUMD = 0, as well as three joint cases: H0 : αCMA = αUMD = 0;
H0 : αRMW = αCMA = αUMD = 0; H0 : αHML = αRMW = αCMA = αUMD = 0. The q-factor model uses
R MKT , R ME, R IA, R ROE, while the q5 model adds R EG to the q-factor model. The sample is from
January 1967 to December 2022 with T = 672 as in Table 2.
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Table A2: Spanning tests by regressing Fama-French factors on q factors: alternative tests

χ2(α̂LS) CQR(α̃CQR)

GRS-stat p-value A|αi| CQR-stat p-value A|αi|
Panel A: HML, RMW, CMA, UMD on q

H0 : αUMD = 0 1.23 0.27 0.203 1.40 0.24 0.176

H0 : αCMA = αUMD = 0 1.44 0.49 0.111 2.61 0.27 0.107

H0 : αRMW = αCMA = αUMD = 0 2.98 0.39 0.087 5.93 0.12 0.100

H0 : αHML = αRMW = αCMA = αUMD = 0 3.02 0.56 0.066 6.03 0.20 0.090

Panel B: HML, RMW, CMA, UMD on q5

H0 : αUMD = 0 0.05 0.82 0.043 0.51 0.47 0.111

H0 : αCMA = αUMD = 0 1.34 0.51 0.042 0.76 0.69 0.064

H0 : αRMW = αCMA = αUMD = 0 1.53 0.67 0.043 2.24 0.52 0.076

H0 : αHML = αRMW = αCMA = αUMD = 0 1.57 0.81 0.036 2.27 0.69 0.069

Notes: This table corresponds to Table 3 in the main text, while using two alternative tests. Instead of
the GRS test and the CQR test using α̂CQR in Table 3, this table uses the asymptotic counterpart of the
GRS test (denoted by χ2(α̂LS)) with White standard errors, and the CQR test using α̃CQR. For these two
alternative tests, this table reports their test statistics, p-values, and the mean absolute value of estimated
alphas A|αi|. The null hypothesis is that the alphas of Fama-French factors (HML, RMW, CMA, UMD)
are zero, when regressing them on q factors for Panel A, or q5 factors for Panel B. We consider the single
H0 : αUMD = 0, as well as three joint cases: H0 : αCMA = αUMD = 0; H0 : αRMW = αCMA = αUMD = 0;
H0 : αHML = αRMW = αCMA = αUMD = 0. The q-factor model uses R MKT , R ME, R IA, R ROE,
while the q5 model adds R EG to the q-factor model. The sample is from January 1967 to December 2022
with T = 672 as in Table 2.
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