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Abstract

Evaluation of asset pricing models is largely based on the alphas (intercepts) in the linear regression of
excess asset returns on risk factors. When regression errors are not normally distributed, the least squares
estimator for alphas is inefficient, which further leads to less powerful testing of alphas by the Gibbons,
Ross, and Shanken (1989, GRS) test. We use the composite quantile regression to estimate alphas, and
show that it provides more accurate alpha estimates under a variety of non-normal distributions. A
joint test of alphas using composite quantile regression is also developed, which can reject zero alphas in

spanning tests when the GRS test does not.
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1 Introduction

The influential Gibbons, Ross, and Shanken (1989, GRS hereafter) test of portfolio efficiency has become one
of the default tools for evaluating asset pricing models; see, e.g., Cochrane (2005), Fama and French (2015,
2016, 2017, 2018), and Hou, Xue, and Zhang (2015). More recently, Kleibergen and Zhan (2020) extend the
GRS test to construct confidence sets of risk premia; see also Kleibergen, Kong, and Zhan (2023). From a
methodological perspective, the GRS test, as well as its extension in Kleibergen and Zhan (2020), is a joint
test of alphas (intercepts) in a set of linear regression equations, for which the least squares estimator is
well known to be efficient under normally distributed regression errors. The GRS test is built on the least
squares estimator for alphas, and it is a uniformly most powerful test if the assumed normal distribution
holds. Financial asset returns, however, are typically not normally distributed (see, e.g., Affleck-Graves
and McDonald (1989)), and their resulting regression errors may not be exactly normal either. The least
squares estimator for alphas is thus unlikely to be efficient in empirically relevant settings. Consequently,
the estimated alphas by least squares could be imprecise due to non-normality, which further casts doubt on
the GRS test that relies on such estimated alphas.

It is worth noting that the alphas, or intercepts, in linear regression equations can be of interest in many
different contexts. For instance, in the so-called regression discontinuity designs, the difference in alphas
above and below the regression discontinuity cutoff can be interpreted as the local average treatment effect;
see, e.g., Cattaneo, Idrobo, and Titiunik (2019). In financial economics, alphas are often interpreted as the
abnormal returns with respect to the investment strategy reflected by regressors, so they are expected to
be zero under efficient portfolios; see, e.g., Gibbons, Ross, and Shanken (1989). Furthermore, in spanning
tests where tested risk factors are regressed on a set of existing factors (see, e.g., Hou, Mo, Xue, and Zhang
(2019)), whether the tested factors are considered redundant depends on the values of their alphas. All such
alphas have been widely estimated in existing empirical studies by least squares, which may not be efficient
especially when financial data are involved.

In light of the above, we propose to use an alternative estimator for alphas, which can outperform the
commonly used least squares estimator in a variety of data generating processes. The alternative estimator
we use is based on the composite quantile regression (CQR) approach of Zou and Yuan (2008), who show that
the CQR estimator for regression betas (slope) can be more efficient than the least squares estimator when
regression errors are non-normal. The efficiency gain of CQR results from combining the information from
multiple quantiles, and can be noticeably large. While the CQR approach is straightforward to implement,
our paper differs from the pioneering work of Zou and Yuan (2008) in several aspects. First, Zou and Yuan

(2008) consider one linear regression equation, while our setting involves a system of N equations with N > 1.



Second, Zou and Yuan (2008)’s interest lies in the regression betas (slope) of the single equation, while we
develop a joint test for evaluating alphas (intercepts) of N equations. Third, the analytical result provided in
Zou and Yuan (2008) relies on the simplification that all regressors are assumed to be centered, so they have
mean equal to zero; in contrast, we do not impose this simplification, since the expected values of regressors,
which correspond to factor risk premia in our considered setting, are generally non-zero. Put differently, our
contribution lies in extending the CQR approach so that it can be used for conducting inference on alphas in
a set of linear equations, while Zou and Yuan (2008)’s focus is on the estimation of betas in a single equation.
Despite all these differences, using CQR instead of least squares to improve efficiency under non-normality
remains to be the motivation for our paper.

Kai, Li, and Zou (2010) and Huang and Zhan (2022) also adopt the CQR approach. Counsistent with Zou
and Yuan (2008), both Kai, Li, and Zou (2010) and Huang and Zhan (2022) find that there are efficiency gains
to use the CQR estimator instead of the least squares estimator under non-normality. However, Kai, Li, and
Zou (2010)’s focus is on nonparametric estimation through local composite quantile regression (LCQR), while
Huang and Zhan (2022) explore the boundary points of LCQR, around the cutoff of regression discontinuity
designs. Therefore, these existing studies do not directly apply to our considered setting, although they do
shed light on the superior performance of CQR over least squares. Instead of assuming normally distributed
regression errors, Kai, Li, and Zou (2010) and Huang and Zhan (2022) make the weaker assumption that
regression errors are symmetrically distributed around zero. We therefore adopt this symmetry assumption,
so that the resulting CQR estimator (denoted by éziCQR) converges to the alpha of the mean regression.
Additionally, we also show that the CQR approach can be extended to allow for asymmetric (skewed) error

distributions, and propose a second CQR estimator (denoted by diCQR) whose validity does not depend on

QR

whether error distributions are symmetric or asymmetric. While dic is naturally appealing, we show that

deR can perform better under symmetric errors. Both dl-CQR and diCQR are, however, based on the CQR

approach, so they can outperform the least squares estimator in various non-normal settings.
For ease of exposition, we conduct a simulation study to highlight the difference between the least squares

estimator and the CQR estimator diCQR or diCQR

for estimating alphas. As expected, we find that the CQR
estimator appears to be more efficient than the least squares estimator when the data generating process
of the linear regression involves non-normal error distributions. We further simulate the power curves of
both the GRS test and the CQR-based test for jointly testing zero alphas, under normal and non-normal
distributions. Consistent with the existing literature, the GRS test is found to be more powerful than the
CQR-based test under normally distributed errors. In contrast, under non-normally distributed errors, we

find the evidence that the power of the CQR-based test can exceed that of the GRS test.

We use the proposed CQR-based approach to study the factor models developed by Fama and French



(2018) and Hou, Xue, and Zhang (2015). The six-factor model of Fama and French (2018) includes market
(MEt-RF), size (SM B), value (HM L), profitability (RMW), investment (C'M A), and momentum (UM D)
factors, while the g-factor model of Hou, Xue, and Zhang (2015) involves only four factors: market (R-M KT,
size (R-ME), investment (R_IA), and return on equity (R-ROE).! Yet both Zhang (2020) and Hou, Mo,
Xue, and Zhang (2019) claim that the g-factor model subsumes the six-factor model in spanning tests, which
is consistent with their findings that the GRS test could not reject zero alphas when regressing HM L, RMW ,
CMA, and UM D on the four factors of the ¢g-factor model, i.e., the resulting GRS p-values are just too large
to reject the null of zero alphas. We, however, use the CQR-based approach to estimate alphas and conduct
the joint test of zero alphas. In contrast with the GRS test, the CQR-based test yields small p-values around
0.05, so we can reject zero alphas at the commonly used 5% or 10% significance level, indicating that the
g-factor model does not fully subsume the six-factor model of Fama and French (2018). On the other hand,
when we use the ¢° model of Hou, Mo, Xue, and Zhang (2021), which augments the g-factor model with
the additional expected growth factor (R_EG), we find that both the GRS test and the CQR-based test do
not reject zero alphas when regressing HML, RMW, CMA, and UMD on the ¢° factors. All-in-all, our
findings indicate that the additional expected growth factor in the ¢ model is crucial for helping explain
the momentum factor used in the Fama and French (2018) six-factor model.

In line with our paper, there exists a sizeable literature that aims to extend the GRS test to non-normal
error distributions. Zhou (1993), for example, assumes the class of elliptical distributions, which nests the
normal distribution as a special case; see also Harvey and Zhou (1993). Beaulieu, Dufour, and Khalaf (2007)
further allow for more general distributions including elliptical and non-elliptical ones. Unlike this branch
of literature that relies on non-normal distributional assumptions, the CQR approach does not assume any
specific distribution of regression errors. In this regard, the CQR approach is more comparable to the
generalized method of moments (GMM) approach, which also provides an asymptotic distribution of alpha
estimators without making distributional assumptions; see, e.g., Cochrane (2005) for a textbook discussion.
Unlike the GMM estimator that coincides the least squares estimator for alphas in the just-identified linear
regression, we show that the CQR approach can provide an appealing alternative under non-normal error
distributions.

The rest of the paper is organized as follows. Section 2 presents the CQR approach under symmetric error
distributions, which we use to estimate alphas and develop the joint test of alphas. Section 3 further extends
the CQR approach to allow for asymmetric (skewed) error distributions. To illustrate our methodology,

Section 4 provides a simulation study. The empirical application is discussed in Section 5. Section 6

!The Fama and French (2018) factors can be downloaded from Kenneth R. French’s online data library. The g factors are
available at https://global-q.org.



concludes. Technical details and additional results are relegated to the Appendix.

2 GRS and CQR

Consider a system of N linear regression equations, where X; is the L x 1 vector of regressors:

Yir=o1+ 81X + e

Yor = co + 85X + €24

Y=o+ 8.Xi +en

fort=1,..,T,and T > N+ L. Let @ = (a1, @z, ..., an)’ be the N x 1 vector of alphas (intercepts). In line
with the GRS test, our objective is to evaluate whether Hy : a = 0 holds. Unlike the GRS test, we do not
assume the normal distribution of regression errors in €; = (eyy, €at, ..., €nt)’.

In the context of asset pricing, the dependent variable Yj;, with ¢ = 1,..., N, in (1) can be the excess
return on the i-th test asset at time ¢, while X; is for risk factor returns. If an asset pricing model using X;
as risk factors is able to fully explain expected returns, then a = 0. The GRS test is thus commonly used
for testing Hp : a = 0 and evaluating models. Similarly, in spanning tests, the dependent variable Y;; can be
the i-th tested factor, which is potentially spanned by the L existing factors in X;. If each Yj; is redundant
in the sense that it is fully spanned by X;, then a = 0. Thus, the GRS test for testing Hy : & = 0 has also
been employed for evaluating Yj;.

Since regression errors in €; are unobservable, their distributions are typically unknown. The existing
literature, however, has made distributional assumptions on €;, such as normal, ¢, mixtures of normal
distributions; see, e.g., Gibbons, Ross, and Shanken (1989), Zhou (1993), and Harvey and Zhou (1993).
In contrast, we do not make such distributional assumptions. In this section, we just impose the weaker
condition that the distribution of €; is symmetric around zero, as in Kai, Li, and Zou (2010) and Huang and
Zhan (2022). This symmetry condition is weaker, because it is nested by, e.g., the normal assumption. For

completeness, we further allow for asymmetric (skewed) error distributions in the later Section 3.

2.1 Gibbons-Ross-Shanken

Denote the ordinary least squares estimator for a by &% = (a5, a9, ..., dﬁs)’, where o?iLS withi=1,...,. N

is the intercept estimator by ordinary least squares for the i-th equation in (1). The commonly used GRS



statistic for testing Hy : @ = 0 reads:

GRS-stat = T(T__—JE:L)

N T T (L A O ) T ()TN~ Py 2)

where fix = 2 S0 Xp, Ox = 207 (X — fix)(X; — ix)/, and 55 = L ST &€, with & the least
squares residual for €;. The Fy r_n_ distribution of the GRS statistic results from the assumed normal
distribution of €;; see, e.g., Gibbons, Ross, and Shanken (1989).

An asymptotic counterpart of the GRS test can be written as follows, as T' — oo:
(@) = TGS Var(6F%) 7 1ars 5% (3)

LS can be

where @(dLS ) is the estimated asymptotic variance of &°. The variance expression for &
derived from the GMM framework; see, e.g., Cochrane (2005) for a more detailed discussion. The Y3
distribution in (3) does not require the normality of €;. Instead, it results from the asymptotic normal
distribution of the least squares estimator &°.

Both the GRS test in (2) and its asymptotic counterpart in (3) are, however, built on the least squares
estimator &%°. Under non-normal error distributions, & becomes less efficient, which further affects the

power of the tests in (2) and (3).

2.2 CQR for a single equation

Instead of using least squares to estimate each equation in (1), we use the CQR approach proposed by Zou
and Yuan (2008). Without loss of generality, we focus on the i-th equation in (1) in this subsection, so «; is
our parameter of interest:

}/it :ai'i_ﬂ;Xt"'_Gitv t= 1)"'aT7 (4)

where the p.d.f. and c.d.f. of ¢;; are denoted by f., and Fi,, respectively.

To construct the CQR estimator for «;, we start with ¢ quantile positions 7, with k =1, ..., ¢, such that
TR = 1L+q'2 The objective function for CQR thus reads (see also Zou and Yuan (2008), Kai, Li, and Zou
(2010), Huang and Zhan (2022)):

q T
(Gin, ...Gig, B 9T = argmin S o Vie — i — BIXy) (5)
kPl g=1 t=1

2For example, if ¢ = 5, then 71 = 1/6, 72 = 2/6, 73 = 3/6, 74 = 4/6, 75 = 5/6. Kai, Li, and Zou (2010) and Huang and
Zhan (2022) show that ¢ is a tuning parameter chosen by researchers, while ¢ = 5 is often adequate for many non-normal
distributions. We thus also use ¢ = 5 for our implementation of CQR.



where pr, (1) = 7,7 — r1(r < 0) is the so-called check function, and ayy is the intercept at the k-th quantile.
Note that if ¢ = 1, then (5) reduces to the objective function of the median regression (i.e., quantile regression
at the median). By using ¢ > 1, we aim to combine the information from multiple quantiles to improve the
estimation of «;.

Minimizing (5) yields (&1, ...Gug, BfQR), and the CQR estimator for a; is defined as
1
ayelt = =% "ay. (6)
1=

Theorem 1. Under the regularity conditions provided in the Appendix, as T — oo:
~COR d 1 _ _
VTGS — ;) 4 N <0, qufI(sqlzseil)lleq) (7)

where e, is the g x 1 vector of ones, (52125;1)11 is the upper-left ¢ x ¢ submatrix of S;lES;l, and S,

7

and ¥ are (¢ + L) x (¢ + L) dimensional matrices whose expressions are provided in the Appendix.
Proof. See the Appendix, where the regularity conditions are also presented. O

Theorem 1 shows that diCQR is asymptotically normally distributed, and its asymptotic variance depends
on the error distribution in the i-th equation. At first glance, the variance expression in Theorem 1 may
appear messy, yet it nests two well-known results as we discuss in the remarks below, whose proof is also

provided in the Appendix.

2.2.1 Remark 1

When g =1, &, QR reduces to the intercept estimator of the median regression. Theorem 1 therefore nests

the well-known result for the median regression, for which SZ; 125’; ! reduces to:

-1
1 1 E(X:)

(3)
E(Xy) E(X.X})

whose upper-left element is the asymptotic variance of the intercept estimator, while the lower-right L x L

submatrix is the asymptotic variance of the slope estimator. See, e.g., Koenker (2005). Under symmetric

QR

error distributions, their mean and median coincide, which further implies that &ic converges to «; of the

mean regression.



2.2.2 Remark 2

Theorem 1 also nests the asymptotic behavior of BZC 9% in Zou and Yuan (2008). These authors consider a

single linear equation with E(X;) =0, so SZ, 125;_ ! becomes block-diagonal:

T Tlq
f527(1C1“) Ut fe; (cin) fe; (ciq) 0
Soimst = ' ' ’ ' : 9)
j oy oy N 77 (i) 0
— Zq= Zq./, Trk!
0 0 L

with cip = F'(7%), and 7w = min(7y, Tir) — 7w . The lower-right L x L submatrix of S '3S_! is the

i

asymptotic variance of the slope estimator provided by Zou and Yuan (2008) (see their Theorem 2.1):

ACQR oy d =1 2ok D=1 ThE!
VIG =) SN (O’ B T T en))? ) | (10)

Unlike Zou and Yuan (2008), we focus on «; instead of §;, so the upper-left ¢ x ¢ submatrix of 55125’;1,

which is the asymptotic covariance of (&1, ...44q), is of interest. Under E(X;) = 0, Theorem 1 reduces to:

ACQR_O[, d i q q Tk
VT (éy )N <O’ 22 fe; (i) fe, (Cik’)> . "

Since E(X;) = 0 is not imposed in (1), (7) instead of (11) provides the limit behavior of 4“9 in our setting.

2.3 CQR-based testing of alphas

For N > 1 equations in (1), we denote the CQR estimator of alphas by &“9F = (deR, deR, ...7deR)’,

where each dZCQR for i =1,..., N is described in the previous subsection. In particular, Theorem 1 provides

the asymptotic normal distribution of &Z-CQR. For joint testing of alphas, we also need the asymptotic
covariance of diCQR and deR across any two equations in (1), as shown in Theorem 2 below.

Theorem 2. Consider o?ZCQR and deR with i # j, and 1 < 4,7 < N. Under the regularity conditions

provided in the Appendix, as T" — oo:

~CQR 1 7 —1 —1 1 7 —1 —1
Q; — oy 0 =€ (Si 3S;, )11€q e (Si Ye,e; 5. )116eg
ﬁc 4N ST e 7 (12)
~ R _ _ _ —
&; QR _ o 0 q%ef](SeilEEiﬁj Sﬁjl)ueq q%e;(SéjlﬁSEjl)ueq



where S, S, ¥, and X, are (¢ + L) x (¢ + L) dimensional matrices whose expressions are provided in

the Appendix.

Proof. See the Appendix. O

Given that Theorem 2 provides the joint behavior of any two elements in &% = (a9 ag9f . a{e"y,

5 ceey

we develop a joint test for testing Hy : a = 0, as shown in Theorem 3.

Theorem 3. Under the regularity conditions provided in the Appendix and Hy : a« =0, as T — oc:
CQR(6°9%) = T&“RR Var(6C0R) 16008 4 \2, (13)

where the N x N dimensional Var(&“%%) is the estimated covariance matrix, whose expression is provided

in the Appendix.
Proof. See the Appendix. 0

The x?% distribution in Theorem 3 results from the asymptotic normal distribution of the N-dimensional
&9 with N > 1, because the quadratic form of &“9% makes the CQR test statistic. We note that the
GRS statistic in (2) and the CQR test statistic in (13) are not directly comparable, since they follow two
different distributions: Fiy r—ny—_1 and X%, respectively. Therefore, the GRS statistic multiplied by N will

have a magnitude comparable to that of the CQR test statistic, since N - Fyr—n_1 A X% as T — oo.

3 CQR for skewed error distributions

In this section, we extend the CQR approach for alpha estimation to allow for skewed error distributions.

cQ

An alternative alpha estimator denoted by &; R, which remains consistent for estimating «; under skewed

errors, is proposed in this section. Correspondingly, Theorems 1, 2, and 3 based on diCQR in Section 2 are

CQR

updated to Theorems 4, 5, and 6 based on &; in this section, respectively.

3.1 Construction of a“?"

Recall that Equation (5) yields a CQR estimator BZC @R for the regression slope 3;, whose consistency and
asymptotic normality are established in Zou and Yuan (2008). Given o; = E(Y;:) — E(X:)'8; in the i-th

equation, we can construct the alpha estimator diCQR by using BAIC QR,

~CQR ~ ~1 ACQR
a9 = fy, — iy B¢ (14)



with fiy, = % Zthl Yit, and fix = % Zthl X;. The least squares counterpart of deR is diLS, which can be

similarly written as:
&% = iy, — [ixB7° (15)

ACQR

where /S’ZLS is the ordinary least squares estimator for 8;. While g, tends to be more efficient than st

under non-normal regression errors (see Zou and Yuan (2008)), the comparison of (14) and (15) indicates
that o?iCQR can also outperform &F°.
Unlike diCQR in (6), &Z-CQR constructed in (14) does not require regression errors to be symmetrically

distributed. This is due to the fact that the consistency of BZC QR

does not require the symmetry condition as
shown by Zou and Yuan (2008). Therefore, diCQR is valid for conducting inference on alphas under skewed
error distributions, for which we provide further details next.

. . ~CQR
3.2 Testing of alphas by using q;,

Based on &iCQR, Theorems 4, 5, and 6 below are the counterparts of Theorems 1, 2, and 3 based on diCQR,

respectively. In particular, Theorem 4 provides the limiting distribution of diCQR. Given that BZC QR, as well
as fiy, and fix, is asymptotically normally distributed under regularity conditions, the limiting distribution

of diCQR in Theorem 4 can be derived by the delta method.

Theorem 4. Under the regularity conditions provided in the Appendix, as T — oco:

VT(aSR — o) S N (0, E(X,) (S7 S8 00 B(X) + var(ey)) (16)

7

where (S '35 1)s is the lower-right L x L submatrix of S, 'S " in Theorem 1.

Proof. See the Appendix. O

Theorem 5 provides the asymptotic covariance of any two elements in &“?F = (o?lcQR7 0726 QR, deR)’

ceny

for estimating the N x 1 vector of alphas.

Theorem 5. Consider o?icQR and deR with ¢ # 7, and 1 < 7,5 < N. Under the regularity conditions

provided in the Appendix, as T' — oo, the covariance of \FT(&Z-CQR —«;) and ﬁ(deR — ) converges to:
E(X,) (5%, S;,l)ggE(Xt) + cov(€it, €5¢), where (S '3, 5;.1)22 is the lower-right L x L submatrix of
S;lzeiej S;l in Theorem 2.

i

Proof. See the Appendix. O

Theorem 6 develops a joint test for testing Hy : & = 0 by using the quadratic form of &“?F.

10



Theorem 6. Under the regularity conditions provided in the Appendix and Hy : a« = 0, as T — oc:

—

CQR(GCM) = T&ER Var(aC9M) ~1acQm 4 \% (17)

where the N x N dimensional Var(&“%%) is the estimated covariance matrix, whose expression is provided

in the Appendix.

Proof. See the Appendix. O

3.3 diCQR or (SziCQR for spanning tests

As diCQR remains consistent under skewed error distributions, it might be tempting to conclude that we

CQR over a“9F for practical purposes. The comparison of (14) and (15), however,

COR 55

should just choose &

suggests that the performance of dz»CQR depends on the magnitude of the mean of regressors, since B

QR would effectively become similar to &F3. In the limit case

QR

multiplied by fix in (14). When fix is tiny, dic

that E(X;) =0, diCQR and &F¥ are asymptotically equivalent. This provides the reason that &Z-C is not

CQR

; under symmetric error distributions.

Put differently, when error distributions are symmetric, dZ-CQR

afer

always a better choice than &

CQR

can outperform &; ceR

, since &; uses

the symmetry condition while does not. On the other hand, when error distributions are asymmetric,

it is proper to use dl-CQR if the purpose is to consistently estimate alphas of the mean regression.

3

For spanning tests considered in our later empirical study, however, the purpose is to evaluate whether
existing factors span tested factors, for which the GRS test has been commonly adopted. We will thus attach
more weight to the test outcome based on diCQR, for the following reasons. Firstly, the symmetry condition,
which is also imposed in Kai, Li, and Zou (2010) and Huang and Zhan (2022), is weaker than and nested
by the normal distributional assumption of the GRS test. Secondly, skewed regression errors may indicate a
model specification problem in spanning tests. For example, if a skewed factor Y;; leads to skewed errors in
the i-th equation, then it indicates that Yj; is not fully spanned by X;. In this scenario, we would wish to
signal that Yj; is not spanned by X;, while accepting Hy : @ = 0 would lead to a misleading conclusion. As
for the GRS test, we therefore impose the symmetry condition in spanning tests, while acknowledging that
the rejection of Hy : e = 0 could occur due to: (i) @ # 0 when €; is symmetric; or (ii) €; is asymmetric.
Both (i) and (ii) indicate the possibility that Y;; is not fully spanned by X, so rejecting Hp : & = 0 due to

either (i) or (ii) is practically meaningful for the purpose of spanning tests.

3Under skewed error distributions, however, quantile regression is often chosen over mean regression, since mean regression
estimates are sensitive to skewed errors. This is similar to the view that median, not mean, is a preferred measure of central
location when data are skewed.

11



4 Simulation

In this section, we conduct a simulation study to compare the GRS approach with the CQR-based approach
for evaluating alphas. Since the difference of these two approaches is driven by the least squares estimator
versus the CQR estimator for estimating alphas, we also illustrate the performance of these two types of
estimators under a variety of data generating processes.

4.1 & vs. afof

CQR

We start by comparing the least squares estimator diLS with the CQR estimator &;

For our data generating processes of (1), we calibrate X; to the market factor, and X; ~ N(ux,Qx),
where puyx and Qyx are calibrated to the excess market return data we use for the empirical study in the later
Section 5. Similarly, the betas are also calibrated to their estimated empirical counterparts. The value of
alphas is set to zero under the null hypothesis Hy : « = 0, and is non-zero for power analysis. The error
distributions we draw €; from play a key role in our simulation study, and we calibrate the variance of €; to
the residual variance we observe in the time-series regression of the size and book-to-market sorted portfolios
on the market factor.

For a single regression equation considered in this subsection, we set a; = 0, and calibrate 3; to the
average value of betas when we regress the twenty-five size and book-to-market sorted portfolios on the
market factor. The error €;; is drawn from four non-normal distributions taken from Kai, Li, and Zou (2010)
as well as Huang and Zhan (2022), respectively, whose variance is then re-scaled to mimic the variance of
residuals we observe in the regression described above. With the simulated data, we repeatedly conduct the
least squares estimation and the CQR estimation of a;. The reported distributions of &*% (solid black) and

diCQR (dashed blue) in Figure 1 result from 5000 Monte Carlo replications with the sample size T' = 500.%

The comparison of &X9 vs. o}iCQR in Figure 1 for four non-normal distributions shows the efficiency

gain of using the CQR estimator over the least squares estimator. Since the true «; is set to zero, Figure
1 shows that the CQR estimator for «; (dashed blue) is more concentrated around zero, compared to the

least squares estimator (solid black). In addition, Figure 1 shows that the efficiency gain of using diCQR over

&F9 could be small or big, depending on which non-normal distribution is employed in the data generating
process. All these findings are consistent with Theorem 1 and the sizeable CQR literature (see, e.g., Zou

and Yuan (2008), Kai, Li, and Zou (2010), and Huang and Zhan (2022)), which emphasize the advantage of

using the CQR estimator under non-normality.

4Figure Al in the Appendix sets T = 100 to show that the CQR estimator performs similarly well under relatively small
sample sizes.

12



Figure 1: Distributions of 4% and diCQR under nonnormalities
(a) Laplace (b) t-distribution with 3 degrees of freedom
5 5 :
——1LS — LS
----CaR|| | ----CQR||

(c) 0.95N(0, 1) 4 0.05N(0, 32) (d) 0.95N(0, 1) + 0.05N(0, 102)

——1LS —Ls
-~ CQR|| 6f o -~~~ COR|"

Notes: The true value of «; is zero in the data generating process of Yy = a; + 8. X +¢€;;. The solid black line
is the simulated density of the least squares estimator &~ while the dashed blue line is the simulated density
of the CQR estimator &iCQR. X ~N(ux,Qx), and px, Qx, B; are all calibrated to data. €;; is drawn from
non-normal distributions taken from Kai, Li, and Zou (2010) as well as Huang and Zhan (2022): (a) Laplace;
(b) t-distribution with 3 degrees of freedom; (c) 0.95N(0, 1) + 0.05N(0, 32); (d) 0.95N(0, 1) + 0.05N(0, 102).
The variance of €;; is then re-scaled to match empirical data. The sample size T is 500, while the number of
Monte Carlo replications is 5000.
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Table 1: Comparison of éziL and &, when o; =0

aLs afon
mean s.d. |Gi] mean s.d. |6i]

Panel A: T' = 100

(a) Laplace -0.0026  0.3118 0.2484 -0.0045 0.2819 0.2230
(b) t-distribution with 3 degrees of freedom -0.0012 0.3093 0.2477 -0.0056  0.2541  0.2000
(c) 0.95N(0, 1) + 0.05N(0, 32) 0.0010 0.3151 0.2526 0.0004 0.2984 0.2377
(d) 0.95N(0,1) + 0.05N(0, 10?) 0.0024 0.3131 0.2567 0.0012 0.1820 0.1379
(e) N(0,1) 0.0048 0.3159 0.2515 0.0042 0.3270 0.2604
Panel B: T' = 500

(a) Laplace -0.0002 0.1374 0.1093 0.0003 0.1219 0.0971
(b) t-distribution with 3 degrees of freedom -0.0003 0.1370 0.1096 -0.0002 0.1053 0.0834
(c) 0.95N(0,1) + 0.05N(0, 3%) -0.0024 0.1384 0.1111 -0.0021 0.1288 0.1031
(d) 0.95N(0,1) + 0.05N(0, 10?) -0.0009 0.1397 0.1125 -0.0011  0.0665 0.0528
(e) N(0,1) -0.0007 0.1395 0.1116 -0.0004 0.1456 0.1165

Notes: For the least squares and CQR estimators aL and aCQR this table reports their mean and standard

deviations (s.d.) in the settings of Figure 1 and Flgure A1 in the Appendix. |d&;|, the mean absolute value
of estimated alphas, is also reported. The true value of «; is zero in the data generating process of Y;; =
a; + Bi X+ €. Xi ~ N(ux,Qx), and px, Qx, 5; are all calibrated to data. €;; is drawn from: (a) Laplace;
(b) t-distribution with 3 degrees of freedom; (c) 0.95N(0, 1) + 0.05N(0, 32); (d) 0.95N(0, 1) + 0.05N(0, 102);
(e) N(0,1). The variance of €;; is then re-scaled to match the residual variance observed from data. The
sample size T is 100 (Panel A) or 500 (Panel B), while the number of Monte Carlo replications is 5000.
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The findings in Figure 1 are further summarized in Table 1, where we report the simulated mean and
standard deviations of the least squares and CQR estimators under four non-normal error distributions as
Cases (a)(b)(c)(d). To facilitate comparison, we also consider the normal distribution Case (e) in Table 1.
In addition, the mean absolute value of estimated alphas denoted by |&;|, a metric commonly used for model
comparison, is also reported.

For the simulated mean values of &7 and diCQR7 Table 1 shows that they are all around the true value

LCQR

of oy, which is set to zero in the data generating process. Thus, the tiny mean values of &Z-LS and &; n

Table 1 indicate that both estimators appear to have negligible bias.
For the standard deviations of &% and &iCQR, however, Table 1 documents their sizeable differences.

In particular, under the normal distribution in Table 1 Case (e), the standard deviation of dZLS is slightly

~CQR

smaller than that of &, . This finding should not be surprising, since ar

%

S is the efficient estimator under

LS and aC@"

normally distributed errors. Yet the difference in standard deviations between ¢&; Q; in Case (e)

CQR

appears minor, so using &, in the normal case does not appear to suffer too much efficiency loss. On the

other hand, under the four non-normal distributions in Table 1 Cases (a)(b)(c)(d), it is clear that a5 9" is
now associated with smaller values for its standard deviation than those of 4X°. Most notably in Case (d)
with T = 500, the standard deviation of @~“%, 0.0665, is only about half as large as that of &*, 0.1397.

The findings above are also reflected by |&;| reported in Table 1. Since the true «; is set to zero, we

expect that a better estimator for «; is associated with smaller |G;|. For the non-normal Cases (a)(b)(c)(d)

LS

in Table 1, the reported values of |&;| show that aZ?® does much better than &5, especially in Case (d).

On the other hand, &** only slightly outperforms d?QR in the normal Case (e).

The existing asset pricing studies widely use the magnitude of estimated alphas for model evaluation and
model comparison; see, e.g., Fama and French (2015, 2016, 2017, 2018). The findings presented in Figure 1
and Table 1 therefore highlight the relevance of the CQR approach for asset pricing, since it can potentially

provide more accurate alpha estimates.

4.2 GRS vs. the CQR-based test

The GRS test is based on the least squares estimator of alphas, which is not as efficient as the CQR estimator
under non-normality as we observe in Figure 1. Therefore, it is natural to expect that the CQR-based test
for testing zero alphas can exhibit more power than the GRS test, for which we present the simulated power
curves in Figure 2.

For convenience of our power analysis, we let alphas gradually deviate from zero, and we set a o< 1 when

it is nonzero. Put differently, we impose that each «; deviates from zero in the same manner for i = 1,..., N
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Figure 2: Power comparison of GRS and CQR for testing Hjy: « = 0 at the 5% level

(a) Normal (b) Non-normal

Notes: The solid black line is the simulated power curve of the GRS test for testing Hy : @ = 0 at the
5% significance level, while the dashed blue line is the simulated power curve of the CQR-based test. The
benchmark 5% line (black dash-dotted) is also provided to illustrate the 5% size at Hp : & = 0. For the data
generating process of (1), X; ~ N(ux,Qx), and px, Qx, B; are all calibrated to the regression of the twenty-
five size and book-to-market sorted portfolios on the market factor. For (a) Normal: €; = (e, €2t, ..., €nt)’
is drawn from a joint normal distribution whose covariance is calibrated to the residual covariance. For
(b) Non-normal: each element of €; = (eyy, €y, ..., €n¢)’ is drawn from 0.95N(0,1) + 0.05N(0, 10?), and the
covariance of €; is then re-scaled to match the residual covariance. « is set to zero at the null, and o < 1
under the alternative, so the scalar alpha value makes the horizontal line in this figure. The number of test
assets N is 25, and the sample size T" is 500. The power curves result from the average of 5000 Monte Carlo
replications.
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to simplify the simulation study. To generate the power curves in Figure 2, we set N = 25 and T = 500,
while the level of significance is 5%.

For the joint distribution of €; = (eyy, €at, ..., €n¢)’ in the data generating process, we consider two cases.
In the first case for Figure 2(a), we simulate €; from a multivariate normal distribution, whose covariance is
calibrated to the residual covariance in the time-series regression of the twenty-five size and book-to-market
sorted portfolios on the market factor. In the second case for a non-normal distribution in Figure 2(b),
each ¢;; is firstly drawn from the 0.95N(0, 1) 4+ 0.05N(0, 102) distribution we used for Figure 1(d), where the
difference between the least squares estimator and the CQR estimator appears sizeable. We then re-scale
the covariance of €; = (e, €at,...,€nt)’ so that it is also calibrated to the residual covariance we observe
from data. The power curves of the GRS test and the CQR-based test in Figure 2 are then generated by
using the simulated data to test Hy : & = 0 under a sequence of values of .

Figure 2(a) shows that the GRS test is (slightly) more powerful than the CQR-based test under normally
distributed errors in the data generating process. Both tests, however, reject Hy : & = 0 with the probability
near the nominal 5% level at o = 0, so they are size-correct tests. As a moves away from zero, both the
GRS test and the CQR-based test increasingly reject Hy : @« = 0. The GRS test is known to be a most
powerful test under the imposed normal distribution, so its power curve (solid black) is overall above the
power curve of the CQR-based test (dashed blue).

In contrast with Figure 2(a), Figure 2(b) shows that the GRS test is less powerful than the CQR-based
test under the non-normal distribution imposed in the data generating process. Both tests, however, still
reject Hp : o = 0 with the probability close to the nominal 5% level at a = 0, so they remain asymptotically
size-correct. Yet the GRS power curve (solid black) is now below the power curve of the CQR-based test
(dashed blue) in Figure 2(b).

The comparison of Figure 2(a) and Figure 2(b) suggests that it can be practically useful to use the
CQR-based approach. If regression errors are normal, then using the CQR-based approach does not appear
to suffer too much power loss. On the other hand, if regression errors are non-normal, then using the

CQR-based approach can have relatively larger power gains.

4.3 Empirical residuals for simulating skewed errors and &Z-CQR

In addition to the well-known distributions previously listed in Table 1, which aim to mimic various error
features that could go beyond asset pricing, we further use the empirical distribution of residuals for the
simulation study conducted in this subsection. More specifically, we just take the residuals from the spanning

regression considered in our later empirical study, and repeatedly draw regression errors from their empirical
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Figure 3: Comparison of diLS, a;

(a) Symmetric errors

and dic

QR

using empirical residuals for simulation

(b) Asymmetric errors
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Notes: The true value of «; is zero in the data generating process of Y, = a; + 8 X; + €. The solid
black line is the simulated density of the least squares estimator diLS . The dashed blue line is the simulated
density of the CQR estimator diCQR. The dotted red line is the simulated density of the CQR estimator
o?iCQR. Xt ~ N(ux,Qx), and pux, Qx, B; for (a)(b) are all calibrated to data, while in (c)(d), px is
scaled by 5 to make it larger. ¢; is drawn from the empirical distribution of the spanning regression
residuals considered in the later Section 5. For (a)(c): the empirical distribution is made symmetric by
incorporating the positive/negative mirror image of residuals. For (b)(d): the empirical distribution directly
results from residuals, so it is asymmetric (skewed). The sample size T is 500, while the number of Monte

Carlo replications is 5000.
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distribution. Given that the empirical distribution is not perfectly symmetric, it provides a skewed setting

which helps illustrate the performance of diCQR. To facilitate the comparison of o?iCQR with diCQR as well
as diLS in various scenarios, we also consider a symmetric setting. This is achieved by making the empirical

distribution of residuals symmetric through incorporating the positive/negative mirror image of the residuals.

Furthermore, in order to emphasize that the magnitude of F(X;) affects the performance of diCQR7 a setting

with enlarged E(X;) is also simulated. The resulting performances of diLS , diCQR

, and &iCQR are presented

in Figure 3 for four scenarios, depending on whether error distributions are symmetric, and whether E(X;)

is enlarged.

CQR

Figure 3(a) presents the distributions of &*%, &; O

R .
,and & when regression errors are drawn from a

symmetric but non-normal distribution. It shows that all three estimators are centered around the true zero

CQR

%

~CQR

alpha, while the two CQR estimators & and & are more concentrated, compared to the least squares

estimator diLS . More importantly, Figure 3(a) also shows that o?iCQR performs better than diCQR. All these

findings are consistent with the discussions in the previous Section 3, making dZ-CQR the recommended choice

under symmetric but non-normal regression errors.

QR

Figure 3(b) is generated under asymmetric (skewed) regression errors. It shows that dic remains

centered around zero, while diCQR does not, i.e., its distribution is slightly shifted towards the right of

zero. Thus, diCQR can outperform diCQR if regression errors are skewed. Both Figure 3(a) and Figure 3(b),

however, show that the difference between &ZCQR and &% can be minor. This minor difference occurs when
E(X;) is not large, since the performance of &Z-CQR depends on the magnitude of E(X;) as explained in
Section 3. For Figure 3(c) and Figure 3(d), we therefore enlarge F(X;) (scaled by 5) in the data generating

process to compare with Figure 3(a) and Figure 3(b), respectively.

As E(X;) becomes larger, Figures 3(c)(d) show that the difference between ()ZZ-CQR and &*¥ is more visible.
For instance, in Figure 3(c), &; QR and diCQR almost coincide, both of which clearly outperform o?{“s . Similar

to Figure 1, Figure 3 overall shows that the least squares estimator &~° may not be efficient, while the CQR

i
CQR

approach can provide an alternative choice. While the advantage of using &; is minor under possibly

small E(X;), dicQR becomes appealing especially under symmetric errors (or errors with minor skewness).

The estimators presented in Figure 3 lead to different tests for testing Hy : a = 0 with different power,

as shown by Figure A2 in the Appendix. Like Figure 2, Figure A2 also suggests that the CQR test using

diCQR can have more power than the GRS test, so we relegate the figure to the Appendix.®

5Figure A2 in the Appendix is consistent with Theorems 1-6, and it also carries the following messages: (i) The GRS test
and its asymptotic x? counterpart are found to perform similarly in large samples; (ii) The CQR test using diCQR has slightly
more power than the GRS test, unless E(X¢) is large; (iii) The CQR test using &Z_CQR appears most powerful, yet its size at
Hp : o = 0 is a bit distorted under asymmetric errors (see Figure A2(b)). This size distortion is minor, when compared to the
large power gains under o # 0; in addition, it helps signal that the corresponding spanning regression is possibly misspecified,
since regression errors are skewed.
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5 Application

In this section, we contrast the commonly used GRS test with the proposed CQR-based test in an empirical
study. The purpose is to investigate whether using the CQR-based test instead of the GRS test could cause
any meaningful difference in practice. To this end, we explore whether the g-factor model of Hou, Xue, and
Zhang (2015) subsumes the six-factor model of Fama and French (2018).

Zhang (2020) states that “... despite having two fewer factors, the Hou-Xue-Zhang g-factor model fully
subsumes the Fama—French siz-factor model, including UMD.” Similarly, the abstract of Hou, Mo, Xue, and
Zhang (2019) states: “In spanning tests, the g-factor model largely subsumes the Fama—French five- and six-
factor models ...” These statements, however, are largely based on their GRS test outcomes for evaluating

alphas in spanning regressions, which we examine by using the CQR approach.

5.1 Data

The six factors of Fama and French (2018) include: Mkt-RE (market), SM B (size), HM L (value), RMW
(profitability), CM A (investment), and UM D (momentum), which nest those in the three-factor model of
Fama and French (1993), the four-factor model of Carhart (1997), and the five-factor model of Fama and
French (2015). On the other hand, the g-factor model of Hou, Xue, and Zhang (2015) uses only four factors:
R_MKT (market), RA.ME (size), R_-IA (investment), and R_ROFE (return on equity). More recently, Hou,
Mo, Xue, and Zhang (2021) augment the ¢-factor model with the additional R_EG (expected growth) to
construct the ¢° model. The data of Fama and French (2018) factors we use are downloaded from Kenneth
R. French’s online data library, while the data of ¢ factors are from https://global-q.org. Overall, we
consider eleven factors as presented in Table 2.

Table 2 provides the summary statistics as well as correlation coefficients of the eleven factors over
January 1967 to December 2022, so T' = 672. It is well known that the Fama and French (2018) factors and
q factors are often closely related. For example, the two market factors (Mkt-RF vs. R_MKT) are almost
identical, so their correlation coefficient is rounded to 1 in Panel B of Table 2. Similarly, the two size factors
(SMB vs. R_ME) also have a large correlation coefficient 0.97, while the two investment factors (CM A
vs. R_IA) have the correlation coefficient 0.92. Such large correlations, however, do not appear for HM L,
RMW UMD. In particular, UMD stands out as its largest correlation coefficient 0.49 with ¢ factors is
much smaller, compared to the counterparts of the other Fama and French (2018) factors with ¢ factors
(Mkt-RF: 1; SMB: 0.97; HML: 0.68; RMW: 0.66; CMA: 0.92). Therefore, it is natural to explore
whether UMD (and similarly, but to a lesser extent, HM L, RMW ,Z CMA) is fully spanned by ¢ factors.

The skewness and kurtosis reported in Panel A of Table 2 provide the evidence that factor returns can
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Table 2: Summary statistics and correlation coefficients of factors during 1967:01 — 2022:12

Panel A: Summary statistics

Mkt-RF  SMB HML RMW CMA UMD R-MKT RME RIA RROE REG
mean 0.56 0.21  0.31 0.30 0.32 0.62 0.56 0.27  0.40 0.53 0.78
s.d. 4.59 3.056 3.04 2.26 2.08 4.27 4.59 3.05 2.04 2.60 2.05

skewness -0.49 0.37 0.13  -0.29 0.36 -1.28 -0.49 0.60 0.36 -0.80 -0.02
(p-val) (00)  (.00) (17) (.00) (.00) (.00)  (.00)  (.00) (.00)  (.00)  (.81)

kurtosis 4.61 6.13 5.17 13.89 4.25 12.62 4.61 7.92 4.75 8.31 6.73
(p-val) (00)  (.00) (.00) (.00) (.00) (.00)  (.00)  (.00) (.00)  (.00)  (.00)

ks-stat 0.054 0.049 0.069 0.089 0041 0107 0.054 0.050 0.033 0.072 0.051
(p-val) (04)  (08) (.00) (.00) (.21) (.00)  (.04)  (07) (44)  (.00)  (.06)

ck-stat 0.092 0.278 0.857 0.842 0.529 1.641 0.049 0.176 0.140 0.284 0.300
(p-val) (20) (A7) (.00)  (.00) (.04) (00)  (.93)  (.26) (.88)  (42)  (.44)

Panel B: Correlation coefficients
Mkt-RF 1.00

SMB 0.28 1.00

HML -0.22 -0.03  1.00

RMW -0.18 -0.36  0.11 1.00

CMA -0.38 -0.09  0.69 0.00 1.00

UMD -0.18 -0.09 -0.21 0.08 -0.01 1.00

R_MKT 1.00 028 -0.22 -0.18 -0.38 -0.18 1.00

R-ME 0.27 097 002 -036 -0.04 -0.05 0.27 1.00

RIA -0.35 -0.14  0.68 0.08 0.92  0.02 -0.35 -0.10  1.00

R_ROE -0.21 -0.39 -0.13 0.66 -0.05 0.49 -0.21 -0.32  0.05 1.00

R_EG -0.43 -0.44  0.04 0.38 0.20  0.36 -0.43 -0.39  0.19 0.53 1.00

Notes: Panel A reports the mean, standard deviation (s.d.), skewness, and kurtosis of factor returns. The
p-value for skewness results from testing the null of zero, while the p-value of kurtosis results from testing
the null of 3 or less. In addition, Panel A reports the ks-stat and its associated p-value from the Kolmogorov-
Smirnov normality test. A large ks-stat leads to a small p-value to reject the null of a normal distribution.
Panel A also reports the conditional Kolmogorov test statistic (ck-stat) of Andrews (1997) and its associated
p-value: for each of the Fama and French (2018) factors, the null is that its distribution conditional on the
four factors in the g-factor model is normal; on the other hand, for each of the ¢ factors, the null is that
its distribution conditional on the six factors in the Fama and French (2018) model is normal. The p-value
associated with ck-stat results from 10000 bootstrap replications, since ck-stat is not nuisance parameter-free.
Fama and French (2018) use six factors: Mkt-RF, SMB, HML, RMW K CMA, UMD. The g-factor model
of Hou, Xue, and Zhang (2015) uses four factors: R-M KT, R.ME, R.IA, R_.ROE, while Hou, Mo, Xue,
and Zhang (2021) add R_EG to the g-factor model. Panel B reports the correlation coefficients of factor
returns. The sample contains monthly data starting from January 1967 to December 2022 with T = 672,
which are available from Kenneth R. French’s online data library and https://global-q.org.
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be substantially non-normal. For a normal distribution, the skewness is 0 while the kurtosis is 3. Overall,
the reported values for skewness and kurtosis are quite different from the normal benchmarks, as reflected
by their associated small p-values.

It is worth noting that the momentum factor denoted by UM D also stands out in Panel A of Table 2,
where we report the Kolmogorov-Smirnov normality test statistic (ks-stat), as well as its associated p-value.
Specifically, we standardize each factor, and then compare its empirical distribution after standardization
with the standard normal distribution. The reported Kolmogorov-Smirnov normality test statistic just
reflects the difference in c.d.f. of these two distributions. A large Kolmogorov-Smirnov test statistic, together
with a small p-value, indicates that the distribution of factor returns is substantially different from a normal
distribution. Out of the eleven factors listed in Table 2, we can thus reject the null of a normal distribution
for nine factors at the 10% level, for six factors at the 5% level, and for four factors at the 1% level. Among
all these factors, UM D has the largest Kolmogorov-Smirnov test statistic, and thus the smallest p-value, so

its distribution is substantially different from a normal distribution.

5.1.1 Conditional Kolmogorov test

A subtle point is worth emphasizing: we are motivated by possibly non-normal regression errors, not factors
themselves. In other words, non-normal factor distributions do not necessarily imply that their regression
errors are also non-normal.® Instead of the distribution of factor returns themselves, the distribution of their
regression errors in spanning tests is more relevant for the purpose of this paper. Therefore, we use the
conditional Kolmogorov test proposed by Andrews (1997) to test whether the error distribution in spanning
regressions is normal. The test outcome is presented in Panel A of Table 2, where the test statistic ck-stat
and its associated p-value are reported.

Specifically, for each of the six Fama and French (2018) factors such as UMD, we consider the null
hypothesis that its distribution conditional on the four factors in the g-factor model is normal. On the other
hand, for each of the ¢ factors, the null is that its distribution conditional on the six factors in the Fama and
French (2018) model is normal. The conditional Kolmogorov test is conducted, whose test statistic depends
on nuisance parameters. Thus, its reported p-value results from bootstrap replications; see Andrews (1997).

The conditional Kolmogorov test outcome in Panel A of Table 2 shows that UM D and similarly, HM L,
RMW CMA, lead to tiny p-values. These tiny p-values thus cast doubt on whether the error distribution
should be considered as normal as for the GRS test, when regressing UM D, as well as HM L, RMW , CM A,

on the four factors of the g-factor model.

6For example, if Yj; is just a noisy version of Y7, i.e., Yiy = Y} + €1, then it is possible that €;; is normally distributed,

while Y;; and Y}} are both allowed to be non-normal and skewed.
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5.2 Testing of zero alphas in spanning regressions of the ¢-factor model

Next, we regress the momentum factor denoted by UM D on the four factors in the g-factor model:

UMD = ayyp + BuxrRMKT + BygRME + 81 4R IA+ BrogR-ROE + ¢ (18)

Our interest is on testing whether ayrasp = 0, for which both the GRS test and the CQR-based test can be
applied with N = 1.

As shown in Panel A of Table 3, the GRS test does not reject Hy : ayyp = 0, since its p-value 0.18
is well above the commonly used significance levels such as 5% or 10%. Therefore, the GRS test could not
rule out the possibility that UM D is spanned by the four factors in the g-factor model, which is consistent
with Zhang (2020). In contrast with the GRS test, Panel A of Table 3 shows that the CQR test using &“9F
can easily reject Hy : aypyp = 0. Since the CQR p-value is 0.02, we can reject the null of zero alpha at the
commonly used 5% level. Therefore, a researcher who uses the CQR-based test would conclude that UM D
is not spanned by the four factors in the g-factor model, while the GRS test leads to the opposite conclusion.

In a similar fashion as in (18), we regress CM A, RMW, and HM L on the four factors in the g-factor
model, so acpra, @rMw, and apprr are the resulting intercepts. We then jointly test whether these alphas,
together with ay/p, are equal to zero. This leads to three joint null hypotheses in Panel A of Table 3:
Ho:acma =avmp =0; Ho: apyw = acma = avmp = 0; Ho : apmr = apyw = acma = aymp = 0.
For these joint hypotheses, we report the test outcomes by both the GRS test and the CQR-based test, with
N =2, N =3, and N = 4, respectively.

Unlike the large GRS p-values in Panel A of Table 3, the CQR-based test yields much smaller p-values.
These CQR p-values are all below 10%, so we can reject the null of zero alphas at the 10% level for all the
considered hypotheses. Similarly, at the 5% level, we can reject three out of four hypotheses listed in Panel
A of Table 3. These findings thus cast doubt on the claim that the g-factor model of Hou, Xue, and Zhang
(2015) fully subsumes the six-factor model of Fama and French (2018). Put differently, the GRS test and
the CQR-based test lead to opposite statistical conclusions in Panel A of Table 3.

The seemingly contradictory performance of GRS and CQR in Panel A of Table 3 is mainly due to
their different alpha estimates. As shown by the mean absolute value of estimated alphas A|a;|, the CQR
approach yields larger values of A|w;| than those by GRS. In particular, the magnitude of Alc;| by CQR
is about 50% larger than the GRS counterpart when we focus solely on ayyp, as reported in the first row
of Table 3 Panel A. This finding is consistent with Table 2, where the distribution of UM D conditional
on the four q factors is substantially non-normal as indicated by the conditional Kolmogorov test. Under

non-normal regression errors, least squares and CQR could lead to substantially different alpha estimates.
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Table 3: Spanning tests by regressing Fama-French factors on ¢ factors

GRS CQR(a®RR)

GRS-stat  p-value  Alay| CQR-stat  p-value A|ay]
Panel A: HML, RMW, CMA, UMD on ¢
Hy:aymyp =0 1.78 0.18 0.203 5.61 0.02 0.307
Hy:acpa=ayyup =0 1.03 0.36 0.111 6.56 0.04 0.167
Hy:arpyw = acma =auyup =0 1.10 0.35 0.087 8.39 0.04 0.129
Hy:agyr = appyw = acyma = ayypp =0 0.83 0.51 0.066 9.05 0.06 0.115
Panel B: HML, RMW, CMA, UMD on ¢°
Hy:aypmyp =0 0.07 0.79 0.043 0.01 0.92 0.013
Hy:acpma=ayup =0 0.69 0.50 0.042 0.37 0.83 0.016
Hy:arpyw = acma =auyup =0 0.54 0.66 0.043 1.56 0.67 0.033
Hy:agymrn = appyw = acpa =ayyp =0 0.41 0.80 0.036 2.09 0.72 0.040

Notes: For GRS and CQR, this table reports their test statistics, p-values, and the mean absolute value of
estimated alphas A|c;|. The null hypothesis is that the alphas of Fama-French factors (HML, RMW, CMA,
UMD) are zero, when regressing them on ¢ factors for Panel A, or ¢° factors for Panel B. We consider the single
Hy : aypp = 0, as well as three joint cases: Hy : acpa = ayyup = 0; Hy : agpyw = acma = ayypp = 0;
Hy :agyr = agpuw = acyma = ayypp = 0. The g-factor model uses RMKT, RME, RIA, R.ROFE,
while the ¢° model adds R_EG to the g-factor model. The sample is from January 1967 to December 2022
with T'= 672 as in Table 2.
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5.3 Testing of zero alphas in spanning regressions of the ¢° model

If the four factors in the g-factor model of Hou, Xue, and Zhang (2015) do not fully span the momentum
factor, how about the ¢° model of Hou, Mo, Xue, and Zhang (2021)? We therefore regress the momentum

factor denoted by UMD on the five factors of the ¢° model to examine the intercept ayap:

UMD = ayyp + 5MKTR,MKT + 5A1ER7ME + 5]AR7IA + ﬁROERfROE + ﬁEGRfEG +e (19)

Likewise, the CM A, RMW , HML factors are similarly considered, leading to acara, arymw, and agyr
as intercepts. Test outcomes on the alphas of such factors using the ¢° model are thus presented in Panel B
of Table 3, to contrast Panel A of Table 3 for the g-factor model.

For both the GRS test and the CQR-based test, Panel B of Table 3 shows that they lead to large p-values.
Therefore, we could not reject the null of zero alphas, no matter whether GRS or CQR is adopted. In other
words, neither the GRS test nor the CQR-based test has the power to rule out the possibility that the Fama
and French (2018) six-factor model is subsumed by the ¢®> model in our studied sample. Similar findings can
be seen from Table A1l in the Appendix, where we use a different number of quantiles for sensitivity analysis.

To sum up, the findings in Table 3 suggest that the additional expected growth factor (R_EG) in the
q° model is crucial for helping explain the momentum factor (UM D). Without R_EG, the CQR-based test
rejects zero alpha for the momentum factor in Panel A of Table 3 for the g-factor model. With R_EG, the
CQR-based test does not reject zero alpha for the momentum factor in Panel B of Table 3 for the ¢° model.
Given that Table 2 shows a sizeable correlation (0.36) of R_EG and UM D, the findings documented in Table
3 should not be surprising.

The existing asset pricing literature largely relies on the GRS approach to estimate alphas and evaluate
models. Based on the GRS test outcomes in Table 3, a researcher would thus draw a conclusion similar
to those in Zhang (2020) and Hou, Mo, Xue, and Zhang (2019): the g-factor model is sufficient to span
the Fama and French (2018) factors such as UM D, so it does not appear necessary to have the additional
expected growth factor. Yet the proposed CQR approach conveys the different message that the g-factor
model needs the expected growth factor to better explain the Fama and French (2018) factors. This clearly
shows the value of having the alternative CQR approach to accompany the GRS test, so that researchers
can assess their empirical findings with a second thought.

Lastly, we note that using the asymptotic counterpart of the GRS test does not alter our findings in Table
3; see Table A2 in the Appendix. Since our sample size T' = 672 is already large, using p-values resulting from
X3 for the asymptotic counterpart of the GRS test does not cause any substantial difference to the p-values

we report for GRS in Table 3. Therefore, the power improvement of CQR over GRS we observe in Panel A
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of Table 3 is not caused by using F 7_n_1 or x3 distributions. Table A2 in the Appendix also contains
the findings based on the CQR test using &“?f. Since the mean of factors is generally small as reported
in Table 2, the CQR test using &“?F leads to similar, but mostly smaller p-values, compared to those from
the asymptotic counterpart of the GRS test in Table A2. All these findings are thus consistent with the
power comparison of tests in Figure A2. One might criticize the symmetry condition associated with the
CQR-based test conducted in Table 3. Yet the purpose of Table 3 is to contrast the CQR-based test with
the GRS test, whose normality assumption also implies the symmetry condition. When error distributions
are asymmetric (skewed), the corresponding spanning regressions are likely misspecified, so rejecting zero

alphas in this scenario helps signal that the tested factors are not fully spanned.

5.4 Further discussions

Asset pricing models, especially their linear simplifications, are approximations to reality. From this perspec-
tive, it is not surprising that the null of zero alphas can be rejected by a test with power, when accompanied
with informative data. Failure to reject zero alphas could occur, when the test itself lacks power, or the
employed samples are not sufficiently informative. Therefore, we opt not to overly interpret the test out-
comes of the GRS test or the CQR-based test, regardless of whether these outcomes are in favor of or against
researchers’ prior thoughts.

Nevertheless, given that a variety of models have been proposed in the asset pricing literature, it is
important to have econometric tools that can be used for evaluating the alphas of such models. For this
purpose, the CQR-based approach is proposed in this paper, since it is designed for non-normality in empirical

studies, while the least squares estimator for alphas and the resulting GRS test are not.

6 Conclusion

We propose the CQR-based approach to complement the popular GRS test for evaluating asset pricing
models. When regression errors are normally distributed, the least squares estimator is efficient for estimating
alphas in linear equations, and the resulting GRS test is a powerful test for jointly testing zero alphas. On
the other hand, in empirically relevant settings where regression errors are possibly non-normal, the CQR
estimator can be more efficient than the least squares estimator for estimating alphas, and consequently,
the CQR-based test can have more power than the GRS test. In our empirical study as well as simulation
experiment, we find the evidence that the CQR-based approach outperforms the GRS test in many cases of

interest.
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Appendix

A. Regularity conditions

Conditions 1-2 below are similar to the regularity conditions provided in Zou and Yuan (2008), except that
we do not require E(X;) to be zero, i.e., regressors are not required to be centered.
Condition 1:
T 11 X/ 1 E(X)

t=11X, XX E(X:) E(X:X])

and the (L 4+ 1) x (L + 1) matrix in the limit is positive definite.

Condition 2: The p.d.f. and c.d.f. of ¢;; denoted by f., and F,, exist, and satisfy:

T upt+X u (a 1 E(Xt)/
lim 12/0 VT (F., (a+v/VT) - F.,(a))dv = fei( )(uo,u’) (ug,u’)’

t=1 BE(X:) E(X:X})

where u is the L-dimensional vector, ug is a scalar, and f,(a) is a positive p.d.f. value at a.

Condition 3 below is imposed in Kai, Li, and Zou (2010); see also Huang and Zhan (2022). The symmetric
CQR

error distribution condition is to ensure that the CQR estimator &; converges to the intercept of the mean
regression. It is required for Theorems 1, 2, 3, but not for Theorems 4, 5, 6.

Condition 3: The regression error €;; has a symmetric distribution.

Condition 4 below is imposed for Theorem 3 and Theorem 6, so that the covariance matrix can be
consistently estimated.

Condition 4: There exist consistent estimators for f,, Fe,, and the joint c.d.f. F,,.. around the ¢ quantile

i€
positions.
Condition 5 below is imposed for Theorems 4, 5, 6, so that the sample means are asymptotically normally

distributed.

Condition 5: A central limit theorem applies to the sample means of Y;; and X;, so that

fy, —E(Yie)| 0 var(Y) cov(Yi, Xt)'
— N ,

ix — E(X:) 0| |cov(Yie, X¢) var(Xy)

VT

. ~ T ~ T
with fiy, = % Zt:1 Yit, and fix = % Zt:l Xt
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B. Notation

S, and S, are (¢ + L) x (¢ + L) dimensional matrices. They are defined in the same fashion, with:

fei (Cil)

fe;(cin) E(Xy)

where the upper-left ¢ x ¢ submatrix of S, is a diagonal matrix, and ¢;; =

as above by replacing ¢ with j.

fei(cin) E(Xy)'

fﬁi(ciq) fei(ciq)E(Xt)l

felci) B(Xe) 3ok fe, (cin) E(X: X7)

F; (k). Se, is similarly defined

Yisa(¢+ L) x (¢ + L) dimensional matrix:

T11

qu

E(Xt) EZ/:1 T1k!

Tiq E(Xe)' 37— Tiw
Tqq B(X) Zi/:l Tk
E(X4) Y frmy T B(XeX3) D701 D h—y Tk

with Tkk! = min(Tk,Tk/) — TkgTk’y SO Tk = Tk(l —Tk).

Similarly, ¥, is a (¢ + L) x (¢ + L) dimensional matrix:

Tij,11

EErL‘Ej =

Tij,ql

E(X1) Y1 Tijk

Tijlq E(Xt)' Y h - Tijan
Tij.aq E(X4)" Y h—1 Tijuak'
E(Xy) Y p oy Tijkg B X) Y h_y Yok Tijkk

with 7ij prr = Fe,e, (Ciky Cjir) — TeTrr, and Fe,c; is the joint c.d.f. of €;; and €j;.

C. Proof of Theorem 1

The CQR objective function is provided by:

q T
(G, -G, BEOT) = argminz me (Yie — cir — B X2) .

ik, Bi k=1 t=1
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Define: \/T(BicQR — B) = Urp and VT (G — aar) = Urk, then (Urg,...,Urq, Ur) is the minimizer of

q
U, + X/U
Ly = Z Z (prk <5it — Cik — k\/z—ﬂt) — Py, (Gz‘t - Czk))

k=1t=1

with ¢ = F;l(’rk).

i

Note that the identity
|r —s|—|r|==s(1(r >0) —1(r <0)) + 2/ [1(r <t)—1(r <0)]dt
0

implies

We can thus rewrite L as:

! U, 4+ X/U ¢ T (Uet+X[{U)/VT
Ly = ZZ 7\/}:& (L(eir < cit) — ) + ZZ/ [1(eit < cir +v) — (e < cig)]dv
k=1t=1 T k=1t=1"0
q q
= Y ZrUn+ 25U+ Y BY
k=1 k=1
with
1 T
ZT,k = — (1(61 < Cik) 77’]@)
1 & a
Zr = — ZXt[Z(l(eit < cCik) — )]
\/T t=1 k=1
L T  (Us+X,U)/VT
ng) = Z/ [1(€it < cik + U) — ].(Gn < Cik)]d’l}.
t=170
For B}k):
* T  (Us+X,U)/VT

B = X Pk +0) = Fo(canldo
t=170
1 T (Up+X{U) JT v

= = T[Fe,(cik + —=) — Fe,(cik)]dv
o), s
e 1 B(Xy)
- e, v) (U U

E(Xy) E(XiX])
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and its variance converges to zero (see Zou and Yuan (2008)). Thus, we can rewrite Ly as:

q
Lr % 3 ZriU+ 25U + Y S5 (U, U) (U, U

2 fGi(cik) 1 E(Xt)/
k=1 k=1 E(Xt) E(XtXt/)

1
= (Zrase 210 ) (U1, o Up U + 5 (U0, Uy U S, (U, U, U'Y

with ~ _
ffi (Cil) feyz(cil)E(Xt)/
Sei = 5
fei(cig) fei(cig) E(Xy)'
| fe(ca)E(Xe) o fe(cig) B(X0) Yk fe (cir) E(XeXy) |

where the upper-left ¢ x ¢ submatrix of S, is a diagonal matrix.

(Ura,...;Urq, Ur) results from minimizing Ly above:

Uz, s Ur g, ULY = =S Zr1s ooy Z1.g, Zi7) + 0(1)

i

For (ZT71, veey ZT7,17 Z,T)/Z
(ZT,lv (s ZT,qa Zif)l i> N(O’ 2)

where ~ _
T11 qu E(Xt)/ZZ/:l T1k'
Y= ,
Tq1 Tqq E(Xy) Zi’:l Tak!
E(Xt) ZZ':1 T e B(Xy) Z?@’:l To E(XeXy) ZZ:1 Zz’d Tkk!

with Tgr = min(Te, T ) — TEThe, SO Tk = Te(1 — Tk)-

Thus, we have:

Q1 — 1

(Ura,...,Urg, UL =T ' 4N (0,5.'25:1).
diq — Oéiq
B — B,
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~CQR _ 1

Given the definition &; =3 ZZ:1 @k, the expression above leads to:

C d 1 Clvo—
VT (&S @F _ ) SN (0, (Pe;(SEileeil)neO ,

where a; = 522:1 a;i, results from the equally distributed ¢ quantile positions and the symmetric error
distribution.

Special Case 1: If ¢ =1: 7, = 1/2, ¢;5 =0, 7ppr = 1/4, and

g - f&(o) fﬁz(O)E(Xt)l 5 - i iE(Xt),
A OEX) L 0)BXX) 1B(X,)  LE(X,X))
Thus,
-1
SIIms = bR
I TEI0

E(X:) E(X:X)

Special Case 2: If E(X;) =0, then S, and ¥ are block-diagonal:

fei(ein) 0
S.. = ’
fEi (Ciq) 0
0 0 Zzzl fﬁi (Cik)E(XtXt,)
and _ 8
T11 T]q 0
E =
qu qu 0
0 . 0 EXX)Y i 0>l mew
Thus, _ i
f2, (101i1) m 0
S 'ms it =
T el . 0
fe; (cig) fe; (ci1) f527(c“1)
_ Zqzl >y Thi
_ 0 0 [EGXD T e
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Theorem 2.1 of Zou and Yuan (2008) is on the lower-right L x L submatrix of S35

ACQR _ py 4 n1—1 ZZ:I ZZ’:I Tk
VIGE = 4 o ) LR

while we focus on the upper-left ¢ x ¢ submatrix of of S;'XS- "

D. Proof of Theorem 2

Given Theorem 1, we only need to derive the covariance expression in Theorem 2. The proof of Theorem 1

shows that, for the i-th equation:

b1 — o1

VT = SN Zr sy Z1.gy L) + 0p(1)
dz’q — Oziq
BT i

with Zr = <= 32,1 (1ew < cin) = 7), Zr = o= 32y Xo[Sohoy (ew < cax) — 7))

For the j-th equation, we thus similarly have:

(fkjl — 051

VT = —=S_MZra, s 21, E7) + 0p(1)
Qjq — Qjq
GO9R g,

with Zpj = ﬁ Zthl(l(ejt < Cjg) —Tk), Z7 = \%T EtT:1 X D00 (Ueje < cji) — 7))

The asymptotic covariance of (Zr 1, ..., Z1.q, Z7)" and (211, ..., 27,4, Z7)’ is:

Tij,11 Tijlq E(X4) Y h 1 Tijaw
Esiej = 5
Tijql Tijaq E(Xt)' 30— Tij.ah'
E(Xe) Y hor e B(Xe) X0y Tijkg B(XeX{) 301 Dohmy Tig ks

with 735 ke = Fe,e; (Cik, Cjrr) — ThTrr, and F,¢; is the joint c.d.f. of €;; and €j;.

Thus, the covariance of —S;l(ZTJ, cees 2.4, Zp)' and —SE_jl(ZT,l, s 214, Z0) 18 5512 S—1 whose

€;€5 €5 )
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upper-left ¢ X ¢ matrix is for the covariance of the estimated alphas: &;1, ..., &g, &j1, ..., &jq. The covariance

q%e;(S;lEEiej S;,l)ueq in Theorem 2 thus results from using the definition of the CQR estimator: diCQR =
% >F_, &k, and similarly, deQR = %ZZd Qjk-
Since diCQR and djcQR are driven by their error terms €; and €j;, respectively, Theorem 2 involves

the joint distribution of these two error terms. It is worth noting that we do not assume the same error
distribution across equations, i.e., €;; and €;; are allowed to follow different distributions.

Special Case 3: It is straightforward to verify that 7;; i reduces to zero if €;, €;; are independent. In
this case, X, reduces to a zero matrix, so the off-diagonal covariance in (12) equals zero, implying that

~CQR

& ~CQR

and Q; are asymptotically independent. On the other hand, 7;; xxs reduces to T if i = j, so X,
reduces to X, and the off-diagonal covariance in (12) coincides with the variance on the diagonal.

Special Case 4: If we impose F(X;) = 0, then (12) becomes:

~CQR _ 1 %9 q Tk’ 1 \\¢ q Tijkk!
JT i Yl a4y O |7 2hm1 Xvmt T fortom) @ 2okt 2kt [P TSy N Cowy
) bl
~CQR _ 1 \¢ q Tijkk’ 1 \\q q Thk!
a; a; O |3 Zhmt b=t T e () @ 2=l 2 =1 Fo () fe s o)
which clearly shows that the distributions of two error terms affect the joint behavior of @iCQR and deR .

E. Proof of Theorem 3

Given that Theorem 2 establishes the joint normal distribution of alpha estimators, we only need to show

the covariance estimator Var(&““%?) used in Theorem 3 is consistent:

q%eé(galﬁgil)n@q q%efz(ge_llﬁélfNSSN )Heq
Var(a®?R) =
q%e;(gg;ﬁ]wqgil )11€q q%ef](gg\,lﬁ]g;l)neq

We use SE (and similarly Sej), 2, and 26i6j as follows:

fe (E) feea) A SF, X}
Sei = )
fei (Gig) felGig) 2 00 X}
FAGCTIED DD, RN A (- E X SHEND. G By I N (19 S Sy, 09, ¢1
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1 T Awml
T11 Tiq T Zt:l Xt Zk/:l T1k'

Y= ,
1 T Awl
Tq1 Tqq T D1 Xi D =1 Tak!
IS NS e e R XS e 2 S XX S S T
T 2at=1“t Lik'=1 "1k s T 2ap=1 Mt 2ukr=1Tqk! T 2up=1 Ot Lik=1 L2ik'=1 Tkk
and
~ ~ 1 T / q ~
Tij Tijlq T Dot Xt D=t Tig k!
Beie, = )
~ ~ 1 T / q ~
Tij,ql Tij,qq T D1 Xi D g1 Tiguakt
T i1 Xe Xho iy 7 Xt Xe X Fiska 7 Loy XeX{ Shoy Yoy T
T 2at=1“t Lik=1"ig,kl -+ T 2ug=1t Lik=1"Tijkq T Lit=1 Pt t Lik=1 Lik'=1Tij,kk

with &, = F-1(r.), and F.,, f., are the estimated c.d.f. and p.d.f. based on the CQR residual estimate

G0 of €, gy = P(EG°" < e and €521 < &) — T

Since the CQR estimators of «; and f3; are v/T-consistent, the resulting residual éiCtQR =€ +0p (T-1/2).
The p.d.f. f., and c.d.f. F,, can thus be consistently estimated by fél and ]3'6 using residuals, which further
leads to the consistency of S‘e and ieiej. The consistency of b directly results from the first regularity

condition.

F. Proof of Theorem 4

~CQR _

~ ~ ACQR
Q; = fiy, — i 57C

CQR CQR
i i

is a smooth function of fiy;, fix, and 5’ , where fiy,, fix, and B are all

asymptotically normally distributed. In particular, the asymptotic variance of Blc QR ig (S 125; DYos.

Note that fiy,, fix converge to E(Y;;) and E(X;) respectively, and BiCQR converges to f; (see Zou and
Yuan (2008)). This implies that:

ay U = iy, — i BN B B(Yie) - B(X)'B; = a

K2

In addition, =1, 2% = —3;, and agf = —F(X:). By the delta method, the asymptotic

) BE(Xy) a

60(1'
9E(Ys)
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Q

: ~CQR
variance of &; equals:

(17 _Bév _E(Xt)/)VA

frv; iix B

cor(l, =B, —E(X)")’

where Vﬂy_ fx, BOOR stands for the joint covariance of fiy;, fix, BiCQR, which reads:
var(Yy)  cov(Yi, Xt)' 0
Vﬂyi Jix,BC9R T cov(Yig, Xt) var(Xt) 0

0 0 (85135120

Completing the calculation above leads to E(X;) (S, 'XS. )22 E(X;) + var(e;) for the asymptotic vari-

. ~CQR
ance expression Of Oéi .

G. Proof of Theorem 5

“CQR _ ~ _ ~ ACQR _ . (ACQR i T - _CQR _ ~ -, ACQR
by U = fiy, — i BT = cib @ —jily (B VT By), with & = £ 37/, €. Similarly, Q; o = fly; — fi'x B; o =

_ ~ CQR . — T
o + € — ,u’X(Bj QR _ B;), with €; = % D oie1 €t
. . . . ACQR 5CQR
The proof of Theorem 2 above implies that the asymptotic covariance of f; — (; and Bj —

B; is (S;_lEeiengl)gg, which further leads to the covariance expression E(Xt)’(Se_lﬁlgigj Se_jl)ggE(Xt) +

CQR

- ~CQR
cov(€;, €5¢) for &; Q

—a;, and & 7 — ay.
If + = j, the covariance expression E(Xt)’(Sglileigj S;l)ggE(Xt) + cov(€iy, €51) reduces to the variance

i

expression E(X;)' (S35 1) 22 E(Xy) + var(e;t) in Theorem 4.

H. Proof of Theorem 6

Given the joint normal distribution of alpha estimators, we only need to show the covariance estimator

Var(a®?F) is consistent:

(ST ES aafix + Var(er) oo [y (S5 S ey S5 )aziix + Cov(er, en)
Var(aC9R) =
i (S5 Seve, S5 a2iix + Covlen,e) o i (SoEBS N aafix + Var(ew)

Consistency of fix, S, , ﬁ]eiéj, and 3 is as in the proof for Theorem 3. Consistency of @"(ei) and C’/o\v(ei, €;)

results from using the CQR residual 62623‘ =Y — diCQR — X;BicQR =€t + Op(T’l/z).
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I. Additional numerical and empirical results

Figure A1l: Distributions of 4/ and
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Notes: See also Figure 1 in the main text. The true value of «a; is zero in the data generating process of

o}iCQR under nonnormalities, 7" = 100

(b) t-distribution with 3 degrees of freedom
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Yii = a; + B/ Xt + €. The solid black line is the simulated density of the least squares estimator

while the dashed blue line is the simulated density of the CQR estimator dZ-CQR. X: ~ N(ux,Qx), and
wx, Qx, B; are all calibrated to data. €;; is drawn from non-normal distributions taken from Kai, Li, and
Zou (2010) as well as Huang and Zhan (2022): (a) Laplace; (b) t-distribution with 3 degrees of freedom;
(c) 0.95N(0,1) + 0.05N(0, 32); (d) 0.95N(0, 1) + 0.05N(0, 10?). The variance of €;; is then re-scaled to match

empirical data. The sample size T' is 100, while the number of Monte Carlo replications is 5000.
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Figure A2: Power comparison of four tests for testing Hj : o = 0 at the 5% level

(a) Symmetric (b) Asymmetric
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Notes: The solid black line is the simulated power curve of the GRS test for testing Hp : a = 0 at the 5%
significance level. The dashed blue line is the simulated power curve of the CQR-based test using &“<%.
The dotted green line is the simulated power curve of the asymptotic y? test using &*°. The dotted red
line is the simulated power curve of the CQR-based test using &@“?%. The benchmark 5% line (black dash-
dotted) is also provided to illustrate the 5% size at Hy : & = 0. For the data generating process of (1),
X: ~N(ux,Qx), and px, Qx, B; are all calibrated to data. For (a) Symmetric, and (b) Asymmetric, they
correspond to the settings in Figure 3. « is set to zero at the null, and & < 1 under the alternative, so the
scalar alpha value makes the horizontal line in this figure. The number of test assets NV is 2, and the sample
size T is 500. The power curves result from the average of 5000 Monte Carlo replications.
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Table A1l: Spanning tests by regressing Fama-French factors on ¢ factors: sensitivity analysis

GRS CQR(&“QF)

GRS-stat  p-value  A|ay| CQR-stat  p-value A|ay]
Panel A: HML, RMW, CMA, UMD on q
Hy:aymup =0 1.78 0.18 0.203 6.79 0.01 0.333
Hy:acpma=apyup =0 1.03 0.36 0.111 7.84 0.02 0.180
Hy:appyw = acpa =aymup =0 1.10 0.35 0.087 9.08 0.03 0.134
Ho : amnr = epvw = aona = avpp =0 0.83 0.51  0.066 9.89 0.04 0121
Panel B: HML, RMW, CMA, UMD on ¢°
Hy:aymp =0 0.07 0.79 0.043 0.08 0.77 0.039
Hy:acpma=aymup =0 0.69 0.50 0.042 0.62 0.73 0.032
Hy:appyw = acma =ayup =0 0.54 0.66 0.043 1.21 0.75 0.036
Hy:apgyr = armyw = acyma =auymp =0 0.41 0.80 0.036 2.17 0.70 0.046

Notes: This table corresponds to Table 3 in the main text. While Table 3 sets ¢ = 5 for CQR, this table
sets ¢ = 3 (three quantiles). For GRS and CQR, this table reports their test statistics, p-values, and the
mean absolute value of estimated alphas A|a;|. The null hypothesis is that the alphas of Fama-French
factors (HML, RMW, CMA, UMD) are zero, when regressing them on ¢ factors for Panel A, or ¢° factors
for Panel B. We consider the single Hy : apyyp = 0, as well as three joint cases: Hg : acpa = ayyup = 0;
Hy: aryw = acma = ayup =0; Hy: agyprn = aryw = acma = aypup = 0. The g-factor model uses
R.MKT, R.ME, RIA, R_ROE, while the ¢° model adds R_EG to the g-factor model. The sample is from
January 1967 to December 2022 with T' = 672 as in Table 2.
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Table A2: Spanning tests by regressing Fama-French factors on ¢ factors: alternative tests

(@) CQR(G9R)

GRS-stat p-value  Aloy| CQR-stat  p-value A|oy]
Panel A: HML, RMW, CMA, UMD on ¢
Hy:aymp =0 1.23 0.27 0.203 1.40 0.24 0.176
Hy:acma=aymup =0 1.44 0.49 0.111 2.61 0.27 0.107
Hy:appyw = acma =aymup =0 2.98 0.39 0.087 5.93 0.12 0.100
Hy:apgyr = apuw = acpma =auyup =0 3.02 0.56 0.066 6.03 0.20 0.090
Panel B: HML, RMW, CMA, UMD on ¢°
Hy:aymyp =0 0.05 0.82 0.043 0.51 0.47 0.111
Hy:acpa =aymup =0 1.34 0.51 0.042 0.76 0.69 0.064
Hy:appyw = acyma =ayup =0 1.53 0.67  0.043 2.24 0.52 0.076
Hy:agyr = appyw = acyma =ayymp =0 1.57 0.81 0.036 2.27 0.69 0.069

Notes: This table corresponds to Table 3 in the main text, while using two alternative tests. Instead of
the GRS test and the CQR test using &“9F in Table 3, this table uses the asymptotic counterpart of the
GRS test (denoted by x2(&*®)) with White standard errors, and the CQR test using &“%*. For these two
alternative tests, this table reports their test statistics, p-values, and the mean absolute value of estimated
alphas A|a;|. The null hypothesis is that the alphas of Fama-French factors (HML, RMW, CMA, UMD)
are zero, when regressing them on ¢ factors for Panel A, or ¢° factors for Panel B. We consider the single
Hy : aypp = 0, as well as three joint cases: Hy : acpa = aypup = 0; Hy : appyw = acma = ayypp = 0;
Hy : agyr = appyw = acyma = ayypp = 0. The g-factor model uses RMKT, RME, RIA, R_.ROFE,
while the ¢° model adds R_EG to the g-factor model. The sample is from January 1967 to December 2022

with 7' = 672 as in Table 2.
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