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This paper presents a new primal-dual method for computing an equilibrium of a generalized Nash equi-
librium problem (GNEP), where each player’s feasible strategy set depends on the other players’ strategies.
The method is based on a new form of Lagrangian with a quadratic approximation. First, we reformulate a
GNEP as a saddle point computation problem using the new Lagrangian and establish equivalence between
a saddle point of the Lagrangian and an equilibrium of the GNEP. We propose a simple first-order algorithm
that is convergent to the saddle point. Furthermore, we establish global convergence under the assumption
of Kurdyka-Lojasiewicz property. Our method has two novel features over existing approaches: (i) it requires
neither boundedness assumptions on the strategy set and the set of multipliers of each player, nor bounded-
ness assumptions on the iterates generated by the algorithm; (ii) to the best of our knowledge, it is the first
development of a first-order distributed method to solve a general class of GNEPs. Numerical experiments

are performed on test problems, and the results demonstrate the effectiveness of the proposed method.

1. Introduction

We consider generalized Nash equilibrium problems (GNEPs) that describe a broad class of non-
cooperative games, in which each player seeks to optimize her/his own objective function while
subject to certain constraints that are affected by the other players’ strategies. The standard Nash
game (Nash 1950) is a subclass of GNEPs, as the strategic interactions among players in a Nash
game are only reflected in their objective functions, not in the constraints. Specifically, the game
features a set of N players denoted by N = {1,..., N} where each player v has its own strategy
x¥ € R™. Each player v has an objective function 6, (z”,z~") and a finite set of coupling constraints
g/ (z",x7") <0 (i=1,...,m,), both of which depend on player v’s own strategy z” as well as
other players’ strategies 7" := (33”/),,/#,,. Denote all players’ strategies by a vector x = (z”,27") :=
(z',...,2",..., ") with dimension n = ijv:l n,. The GNEP can be formally defined as a problem
of finding a solution for each of the following problems. Given other players’ strategies =", each

player v seeks to find a strategy z¥ that solves the optimization problem:

minimize 6, (z",z7")
o )
subjectto g/ (z",x7") <0, i=1,...,m,,
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where X, C R™ represents the private strategy set of player v that is nonempty, closed, and convex.

The feasible strategy set of each player v can be represented by the parametric inequalities:
F(x™"):= {:U” €X, g/ (z",x7")<0,i=1,... ,m,,} CR™,

Note that for simplicity, private functional constraints ¢/ (z") <0 for j=1,...,p, are not explic-
itly highlighted in the paper. They can be easily handled in the same way to deal with g7 (¥, 27") <
0. Here, n,,, m,,, and p, are positive integers. The set X, is defined as X, := {z* e R™ | [, <z" <w,},
where [, or u, may be unbounded; that is, [, = —oco or u, = 400 or both.

A Nash equilibrium of the GNEP can be defined as follows.

1,%

DEFINITION 1. A collection of strategies x* = (z™*,...,x
Nash equilibrium (GNE) if for every v=1,..., N,

N*) is a (pure-strategy) generalized

0, (x”’*,x_”’*) <40, (w”,x_”’*) , V¥ e F,(xz7"),

1,*,. N,*)

ie., x*=(z C T is a GNE, if and only if no player has an incentive to unilaterally deviate

* v

3%

from z"* when other players choose =~

We make the following assumption on the functions throughout the paper.

ASSUMPTION 1. For every v € N and fized x™", objective function 0,(z",x~") and constraint

functions g/ (z",x27"), i=1,...,m,, are continuously differentiable and convex with respect to z".

Note that 6, (x”,27") and g/ (x”,z~") are possibly nonconvex in other players’ strategies ' e
x~", and g/ (z¥,x~") are not necessarily shared by all players (non-shared coupling constraints).
Under Assumption 1, problem (1) is known as a very general form of GNEP (Dreves et al. 2011)
(We call it general GNEP).

In this paper, we aim to provide and analyze a first-order decomposition algorithm, based on a
novel form of Lagrangian, to compute an equilibrium of the general GNEP, provided that equilibria
of generalized Nash game exist.

We also make two standard assumptions; Lipschitz gradient continuity of the objective and

constraint functions (smoothness) and coercivity of the objective functions.

ASSUMPTION 2. Forv=1,...,N, the gradients of 8, and g* are Lvyy,-Lipschitz continuous and

Ly ,v-Lipschitz continuous, respectively. That is,

V<0, (x1) — Vi, (x2)|| < Lve, ||x1 —%2||, Vxi1,%x€X, (2a)
IVig” (%1) = Vxg” (%2)[| < Lygv [[x1 = %af|, - Vx1, %2 € X, (2b)

where V,0,(x) and Vyg”(x) represent (V,10,(x),...,V,n0,(x)) and (V19" (x),...,V,ng"(x)),
respectively, and X:=]] _, &, .
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ASSUMPTION 3. Foreveryv=1,...,N, the objective function 0, (z",x~") is coercive with respect

tox = (IBV?m_y) ek, xX_,, ie., hmeHHOO HV(X) = 0.

Note that we do not impose the coercivity assumption on the feasible strategy sets, contrary to
the interior-point algorithm (Dreves et al. 2011) for general GNEPs. The algorithm in Dreves et al.
(2011) relies on the strong assumption that the feasible strategy sets of all players are bounded,
i.e., lim x| o0 || 9% (x)|| = 400 where g% (x) :=max{0, g"(x)} for all v =1,...,N.

1.1. Literature Review

The GNEP was originally introduced in seminal works by Debreu (1952) and Arrow and Debreu
(1954) in the early 1950s, where the GNEP was referred to as a social equilibrium problem or
an abstract economy. One important subclass of GNEPs, known as jointly-convex GNEPs (also
called shared-constrained GNEPs), was first investigated by Rosen (1965).This class of GNEPs
is characterized by shared constraints across all players, i.e., the convex coupling constraints are
identical for all players (¢' =--- = g = g). While early studies on GNEPs were primarily con-
cerned with economics, recent decades have witnessed a growing interest in GNEPs as a modeling
framework and solution concept in various application areas. Some examples include electricity
market models (Jing-Yuan and Smeers 1999, Contreras et al. 2004, Hobbs and Pang 2007), power
allocation in telecommunications (Pang et al. 2008, Scutari et al. 2014), environmental pollu-
tion control (Krawczyk and Uryasev 2000, Breton et al. 2006), transportation systems (Stein and
Sudermann-Merx 2018), and cloud computing (Cardellini et al. 2016), to name a few.

Numerous algorithms have been developed for computing a GNE of a GNEP in the literature.
One popular approach involves transforming a GNEP into a variational inequality (VI) problem and
applying algorithms designed to find a solution of a VI reformulation, i.e., variational equilibrium
(VE) or also called normalized Nash equilibrium (Facchinei and Kanzow 2010a); see e.g., Harker
(1991), Pang and Fukushima (2005), Facchinei et al. (2007), Nabetani et al. (2011), Yin et al.
(2011), Kulkarni and Shanbhag (2012), Migot and Cojocaru (2020). The VI approach simplifies
solving the GNEP to finding a solution for a VI, instead of solving a more complicated quasi-
variational inequality (QVI) as required for a GNEP (Facchinei and Kanzow 2010a). Importantly,
the set of VEs is known to be a subset of GNEs (Ba and Pang 2022). However, a notable limitation
of the VI-based approach is that it is only applicable to jointly-convex GNEPs.

Another widely used method for computing GNE involves reformulating a GNEP into a global
optimization problem via the Nikaido-Isoda (NI) function (Nikaido and Isoda 1955). The result-
ing optimization problem is then solved using the so-called relaxation algorithms (Uryas’ev and
Rubinstein 1994, Krawczyk and Uryasev 2000, Contreras et al. 2004, Von Heusinger and Kanzow

2009a,b). However, these methods are also restricted to jointly-convex GNEPs and are known to
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be computationally expensive. Other algorithms designed for this class of GNEPs include Newton-
type methods (Facchinei et al. 2009, von Heusinger et al. 2012, Izmailov and Solodov 2014) and
Lemeke’s method (Schiro et al. 2013) for specifically affine GNEPs.

Another line of relevant work is concerned with distributed algorithms for solving the GNEPs.
In the context of primal-dual schemes for computing GNE, there has been a surge of interest in
developing distributed primal-dual schemes for computing GNE for shared-constrained GNEPs
(Zhu and Frazzoli 2016, Grammatico 2017, Paccagnan et al. 2018, Yi and Pavel 2018, 2019, Deng
2021, Cenedese et al. 2021, Migot and Cojocaru 2021, Belgioioso et al. 2022). These methods,
however, are applicable only to jointly-convex GNEPs (GNEPs with shared constraints or affine
coupling constraints). Distributed algorithms to date have been relying on monotonicity properties,
which do not generally hold in general GNEPs we’re focusing on in this paper.

The equilibrium computation of GNEPs beyond the class of jointly-convex GNEPs remains a
very challenging task. This is mainly due to interdependence between each player’s strategy and
some other players’ strategies through both objective and coupling constraints, along with the
potential nonconvexity of each player’s problem in the other players’ strategies. A few algorithms
have indeed been proposed, including penalty-type methods (Pang and Fukushima 2005, Facchinei
and Kanzow 2010b, Kanzow and Steck 2018, Ba and Pang 2022), interior point algorithm (Dreves
et al. 2011), and augmented Lagrangian method (Kanzow and Steck 2016, 2018).

In all such methods, it is assumed that the Extended Mangasarian-Fromovitz Constraint Qualifi-
cation (EMFCQ), an extension of the MFCQ for infeasible points, holds for every player'. However,
this EMFCQ is a restrictive assumption because it is equivalent to the set of the multipliers of each
player being bounded (Nocedal and Wright 2006). This assumption is often violated in the context
of GNEPs, as illustrated by simple examples in Dorsch et al. (2013). This violation occurs due to the
interdependency between z* and z~" through coupling constraints g7 (z”,2™") <0, i=1,...,m,,
where the gradients of constraints can be (positively) linear dependent. In such cases, algorithms
can generate unbounded function values, which can lead to failures of convergence to GNEs or
even feasible points.

Penalty-based algorithms reduce the GNEP to a standard Nash equilibrium problem (NEP) by
penalizing coupling constraints and focus on updating the penalty parameter. In particular, the
exact penalty method in Facchinei and Kanzow (2010b) results in nonsmooth subproblems, so
it obtains a GNE under various differentiability assumptions on the objectives and constraints.
This lack of differentiability is a serious problem for designing efficient algorithms. To address the
"For all v =1,...,N and for x = (z”,2"), there exists a vector d” € R™ such that Vg!(x)"d” <0 Vi€ I%(x),

where IZ(x) ={i€{1,...,m.} : g/ (x) > 0} denotes the set of active or violated constraints for player v (Facchinei
and Kanzow 2010b, Kanzow and Steck 2016).
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drawbacks of penalty-based methods, Kanzow and Steck (2016) proposed an augmented Lagrangian
method. This approach requires an assumption that there exists a limit point of the sequence {x*}.
However, this assumption is not clear without compactness of each player’s private set.

It is noteworthy that even with coercivity assumption on the objective function, the augmented
Lagrangian (AL) method (Kanzow and Steck 2016) does not guarantee boundedness of primal/dual
sequences. To ensure the boundedness of the sequences, bounded level sets of AL functions are
needed, but they are typically unbounded. This is mainly related to the behavior of the multiplier
sequence {\""*}. Specifically, the AL method (Kanzow and Steck 2016) is of min-max dynamics (due
to the increase in the dual variables), and by nature, the AL function alternatively increases and
decreases, and the dual sequence {\**} might be unbounded. Hence, the coercivity of the objective

function does not imply the boundedness of primal and dual sequences in the AL framework.

1.2. Our Contributions
This paper presents a novel algorithmic framework for computing an equilibrium of a general GNEP
without imposing boundedness assumptions on primal-dual sequences and (feasible) strategy sets.

e We introduce a new Lagrangian combined with artificial variables to reduce the GNEP to a
standard Nash game, where the artificial variables are used to get rid of the coupling con-
straints while regularization terms lead to strong concavity of the Lagrangian in the multipli-
ers. This allows for the design of an algorithm that generates a bounded primal-dual sequence
without imposing EMFCQ assumption and removes computational effort in updating the
penalty parameter, as in Facchinei and Kanzow (2010b) and Kanzow and Steck (2016).

e The proposed algorithm can effectively handle the potential nonconvexity of each player’s
functions with respect to other players’ strategies by utilizing a simple quadratic approxima-
tion of P-Lagrangian. This quadratic approximation also provides a first-order decomposition
scheme, enabling distributed updates of primal variables. As a result, this algorithm represents
the first distributed approach to solving general GNEPs.

e We prove that our algorithm is convergent to a saddle point of P-Lagrangian under stan-
dard assumptions. Unlike existing methods for general GNEPs, our analysis does not require
boundedness assumption on the iterates generated by the algorithm. We also do not use safe-
guarding technique (Andreani et al. 2007, 2008) to bound multiplier iterates as in Kanzow
and Steck (2016). We establish the global convergence under an additional assumption that

the objective and constraint functions satisfy the Kurdyka-Lojasiewicz property.

Outline of the paper. This paper is organized as follows. In section 2, we introduce the P-

Lagrangian function, describe its characteristics, and reformulate the GNEP as a saddle point
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computation problem using the P-Lagrangian. Section 3 presents a distributed first-order primal-
dual algorithm based on a quadratic approximation. In Section 4, we establish the convergence

properties of the proposed algorithm. Numerical results are presented in Section 5.

Notation. We use R™ and R™ to denote the n,-dimensional Euclidean vector space and m,,-
dimensional Euclidean vector space, respectively. For two vectors x,y € R™, the inner product is
denoted by z7y, and the standard Euclidean norm is denoted by |z|| = vzTx. For a real scalar
z € R, we define [2]” = max{z,0}. We use R™ to denote the nonnegative orthant of R, and the

notation x > 0 denotes that the vector z belongs to the nonnegative orthant.

2. Proximal-Perturbed Lagrangian Formulation
Before introducing Proximal-Perturbed Lagrangian (P-Lagrangian), we recall that under Assump-
tion 1 and suitable constraint qualifications, a GNE x* = (x!*,... 2™*) can be characterized by the

Karush-Kuhn-Tucker (KKT) conditions (Facchinei and Kanzow 2010a, Kanzow and Steck 2016):

The KKT conditions. Assume that a suitable constraint qualification holds. If there exists a point

x* = (zb*, ..., 2¥) together with some Lagrange multipliers n** satisfying the KKT conditions:
0€ Vau Ly(zv* a7 n"*) + Ny, (z*), zv* e X, 3)
n;" 20, gl (e, am) <0, gy (@, aT) =0, Vi=1,...,m,,

for every v =1,...,N, then x* = (2V*,...,2N*) is a generalized Nash equilibrium (GNE). Here,

Ly(z¥,x7",n") =0, (x”, 27")+ > (ny ) gy (2, 27) is each player v’s Lagrangian, and Ny, (z"*) :=
{d, € X, :dT(x” —x"*) <0,Vz” € X,} is the normal cone to X, at x*.

Assuming a suitable constraint qualification (CQ) holds and under the convexity assumption of
the functions 6, (-,27") and g/ (-,x™") (see Assumption 1), the KKT conditions in (3) become nec-
essary and sufficient optimality conditions for problem (1) (Facchinei and Kanzow 2010a, Theorem
4.6). In addition, problem (1) is equivalent to solving the dual formulation, i.e.,

6, (x)= max (Dé’ (n"):= Zglei{%Lg (m”,;v_”’*,n”)) : (4)

In the general GNEP model, the multiplier set of each player can be unbounded, even when
satisfying the KKT conditions in (3). As previously mentioned, this unboundedness results from the
inherent characteristics of general GNEPs, where the gradients of the constraints at the point x* can
be (positively) linear dependent, leading to an unbounded multiplier set. This aspect complicates
the computation of a GNE, thus making the boundedness of multipliers a key issue when solving
GNEPs. Our motivation for introducing a new Lagrangian is to address this challenge.

This section introduces a new form of Lagrangian that has a desirable structure for equilibrium
computation. We then show that computing a saddle point of the P-Lagrangian is equivalent to

finding an equilibrium of the GNEP (1).
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2.1. The Proximal-Perturbed Lagrangian
Motivated by the reformulation techniques in Bertsekas and Tsitsiklis (1989, Chapter 3.4) and
Bertsekas (2014, Chapter 3.2), we start by transforming problem (1) into an equivalent extended

formulation by introducing perturbation variables z¥ = (z7,...,2% ) =0 as additional constraints

Y my

v

and letting g¥(z",27") < z¥ given ™ ":

minimize 6, (z",z7")
¥V eXy, zV¥ ER™MY (5)

subjectto g"(z",z7")<z", 2z2"=0.
Obviously, for z¥ =0, the extended formulation is equal to problem (1). Noting that the reformu-
lation (5) allows the use of % |2”||* as a penalty term, let us first consider the following partially

augmented Lagrangian for every v =1,..., N:
v 1% -V v 1% 1% v —V v T 1% 1% -V 1% v\T v al/ v 2
L™, 2 N p) = 0, (2%, 7) + () (9" (27, 277) = 2) + () "2 + - 1127117

where XV = (\/,..., Ay ) eRT and p” = (pf,...,puk, ) € R™ are the Lagrange multipliers associ-
ated with constraints g”(z”,z7") — 2 <0 and 2" =0, respectively. a,, > 0 is a penalty parameter.
Observe that given (A", "), minimizing L? with respect to z¥ gives

1
SO ) = (= ),

v

which implies that A\¥ = ¥ at the unique (known) solution z"* = 0. Based on this relation of A\”
and £ from the optimality condition for z*, we add a proximal term —2= ||\ — 1’ |)? to define a

Proximal-Perturbed Lagrangian (P-Lagrangian) as

L@ a2 N ) =0, (e )+ () (g7 (2 ) = )+ ()T

Qy, 2 /Bu 2
_v v _ -~ Al/_ v
S Iy U

where 3, >0 is a proximal regularization parameter.

We observe that the structure of the P-Lagrangian LY, ; in (6) differs from the standard augmented
Lagrangian and its variants (see Hestenes 1969, Powell 1969, Rockafellar 1974, Bertsekas 2014,
Birgin and Martinez 2014). It is characterized by the absence of penalty term for handling the
coupling constraint g”(z”,z7") — z” < 0. Only additional constraint z¥ = 0 is penalized with a
quadratic penalty term < |2/||°, while g”(z”,27) — 2 < 0 is merely relaxed into the objective
with the corresponding multiplier. Second, the P-Lagrangian is strongly concave in A (for fixed

p”) and in p” (for fixed A*) due to the presence of the negative quadratic term —22 ||\ — 7l
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2.2. Equivalence between a Saddle Point of P-Lagrangian and a GNE

v

Now consider the following P-Lagrangian dual problem for given x~":

max {D;ﬁ()\”,,u”) = C;ﬁ(x”,x”,z”,)\”,u”)}. (7)

min
)\VGRTV#VGRWLV TV Xy, 2V eR™Mv

Since L ;(e,27",2", A", u”) is convex, the primal-dual solutions of problem (7), (z"*,z~"*,2"*)

v

and (A\*, u”*) given =¥ = x~"*, can be characterized by the saddle point of the P-Lagrangian.
DEFINITION 2. Given x~"*, a point (a"*,x™"* z"* A"* u”*) is said to be a (parametrized)

saddle point of the Proximal-Perturbed Lagrangian for a, >0 and 3, > 0 if for every v=1,..., N,
Lgﬁ(xl/7*,$—l/7*’zl/7*’ AV,I,LV) S Lgﬁ(xl/7*7$—l/,*’ZV,*,AI/,*,MU,*) S £;5(xl/7x—l/,*’ZV’AV7*7MV,*) (8)

for all (z, 2", A", ") € X, (z7"*) x R™ x R x R™ . Here, x~"* are viewed as parameters.

We establish the equivalence between computing a saddle point of £ ; and finding an equilibrium
of the GNEP (1) by proving Theorems 1 and 2. Before studying the equivalence, let us observe the
following properties of Ly, (z¥, 27,2, A", u").

OBSERVATION 1. Notice that the inner minimization in (7) can be split into two parts as follows:

max { min [9, (", 27) + )" g (x”,x_”)}

/\VGRTV’HVGRMV veX,

zV eR™Mv

. v v v a’/ v 6’/ 1 v
b omin [= v -2 e ] = By 112}.

Denote by z” (A, ") as a unique solution of the problem, min [— =) 2+ @ Hz”]ﬂ for

zV eR™Mv

given (X, *). If we minimize |— (A — )" 2 + & ||z”|]2} with respect to z”, we have
1
# )= (V) = (= W) a2 =0,
Recall that based on the optimality condition for z¥, we added a quadratic regularization term
—%” A — u"\|2 to make the Lagrangian strongly concave in \” (for fixed p”) and in p” (for fixed

A¥) as it vanishes at 2"* = 0. Substituting 2" (A", u”) into Lz (z", 27", 2", \", u”), LY,z reduces to

v v -V U v v v v v —v v v v —-v 1 + aVBV v v
ﬁaﬁ('r?x )y % ()‘au)a)‘au)zeu($’x )_'_()\ )Tg (x,x )_TH/\ _M”Q' (9>
Then the P-Lagrangian dual problem can be expressed as
1 +Oé,,,8,, 2
DY )\u’ v éDV W) — PV Y v , 10
oDy & 0y ) = e (10)

where D§ (\") = xgleigzl,, {QV (2, 27) + (W) g¥ (x”,af”)} , which is identical to the standard dual
function associated with the original problem (1). Thus the P-Lagrangian dual function D}z (A", ")
is maximized jointly in A\¥ and p” if and only if \¥ maximizes DY (\") and A\” = p”. This implies
that the multiplier \*>* for the constraint g” (z”,27") — 2” <0 in extended problem (5) is precisely

to the multiplier n** for the constraint ¢* (z”,z~") <0 in problem (1).



J. Kim: A First-Order Algorithm for GNEPs 9

OBSERVATION 2. If we maximize L} ;(z",27", 2", \", u”) with respect to ", we get
VLl (2,077, 2" N, 1) = 2"+ B, (N — ) =0,

which, along with the fact A** = p**, implies that z” =0 for maximizers (\**, u*) and g, > 0.
Using Observations 1 and 2, we now show the equivalence between a saddle point of L ; and an

equilibrium of the GNEP (1).

THEOREM 1. Let (z"*,x™"", 2", \"*, u"*) be a saddle point of Ly, (z",x7", 2", \",p”) for a
given =7 =x~"* and for some o, >0 and 5, > 0. Then, x* = (z"*,x~"*) is an equilibrium of the

GNEP (1) for everyv=1,...,N.

Proof. Using the reduced P-Lagrangian (9), we have

1+al//81/ 2
v K Uk (\V U vty =0, (x* )\VT V(o*) A —
30602 () ) =0, () + ) ) = 2B e

<L (X, 2 (A ) AR

First, we prove that x* = (z"*, x~"*) is feasible for problem (1). Suppose by contradiction that x*
is infeasible, i.e., g7 (x*) > 0 for some i. Then there exist some A/ such that A\/g? (x*) — oo as AY —
oo. This implies that £, (x*, 2%, A", u”") — oo by taking the limit as A} — oo with A} =y to maxi-
mize the left-hand side of the first inequality in (11), which is a contradiction with the first inequal-
ity in (8). Therefore, gy (x*) <0 for all i =1,...,m,. By the definition L}, (x*,2"",A\"*, u*) =
SUP v >0, Lhp (X5, 2%, A, 1) with the fact that ¢¥(x*) <0 and A\»* >0, we have (\*)"g"(x*) =0
and \»* = p¥*. It thus follows that

‘CZ,B (X*’ Z%*a )‘%*7 /‘L%*) = 91’ (X*) .
Next, let z” € X, (x7"*) be any feasible solution to problem (1). For any feasible z* and A} >0,
since g7 (z¥,27"*) <0, we have

1 1 By
_ +al/611 ||)\V—/_,LVH2§(AV)-O— +a6

N —uv|]? <. 12
S, Sa, I "< (12)

()\V)T gu (.Z'V7£L‘_V’*)
From Observation 2 that z¥ =0 when A¥* = p** for any S, > 0, we have
* Uk v oy v
- e S =0, (13)

The second inequality of the saddle point condition (8) yields
9,, (X*) S 'C;ﬁ (xujxfu,*7zu’)\u,*7ﬂu,*)

— 91/ (IEU7$7V’*) + ()\u,*)Tgu ($V,$7D’*) o % ||>\u,* _Hv,*||2 o ()\1/,* o Mu,*)T 2V 4 % ||ZD||2

<0 =0
v —U,*x
<0, (z",27""),

where the last inequality is from (12) and (13). Hence, x* is a GNE of problem (1). O
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THEOREM 2. Assume that x* = (z%*,...,2™*) is an equilibrium of the GNEP (1) at which
the KKT conditions (3) hold with some Lagrange multipliers n** for all players’ problems, given
x~V=x""*. Then forv=1,...,N, there exist Lagrange multipliers (\""*, u”*) such that

E(I;/B (X*7ZV,*7AV’#V) g £ZB (X*’ZV7*’AV7*’MV,*) S E(I;/B (ml/’x—l/,*7zl/’All,*’ul/7*) , (14)
for any (x¥,2", N\, p”) € X, (x7*) x R™ x R} x R™,

Proof. From the feasibility of a GNE x*, we have for any \¥ € R}, ¥ € R™ and o, 5, >0

1+a,8
T v (xF) — v
()" g () = =5

implying that ,(x") + (A*)7g"(x*) — F52 | N — || = Lo(x, 2" (W, 1), N, 1) < 6,(x7).

200y

I = <0, (15)

On the other hand, since there exists a pair the Lagrange multipliers (A\**, u**) maximizing

LY (x*, 27, N, u”), we also have that for AV = p” =0

v * v, % v * U,% U,k v, % * U,% v * 1+aVBV V,% U,k
Eu,@(x y 2 (0,0),0,O)§£a5(x 12 7>‘ Y )ZQV(X )+()‘ ' )Tg (X )_TH)" —p ||27
which together with the fact that £, (x*, 2 (0,0),0,0) =6, (x*) gives

v, * v * 1+al//811 V% Uk
) g () = F L8P e 0, (16)

v

=

Combining (15) and (16), we obtain
14+, 8,
)\u,* T v *\
(A7) 9" (x7) = —5 =
which implies that LY, (x*, 2%, A", u*) =0, (x*) . Thus, the first inequality in (14) holds.
Using the facts that g¢”(x*) < 0, A»* >0, and (16), we have that 0 > (A\»*)" ¢” (x*) >

v, * v,k (|2
A" = p"" || =0,

v

% | AV — H2 >0, which implies that the multiplier \*"* satisfies the complementarity slack-
ness (A*)" g¥(z"*,27"*) = 0 and A\** = p**. Therefore, the maximizer \** is equivalent to the
Lagrange multiplier n* satisfying the KKT conditions (3) for the original GNEP (1).

Next, noting that V.o LY (2, \"*, u”*) = — (A" — pu*) + @, 2"* = 0 and \"* = p»*, we get the

minimum z"* =0 for «, > 0. By the convexity of 6, (x”,x~"*) and ¢” (z¥,x~"*) in z, we have
0, (:v”, x_”’*) >0, (x*)+ V0, (X*)T (¥ —z""),
v Vo —U% v * v s\ T v vk
9" (2",277%) 2> " (X) + Vg (x7)" (2 —2").

Then we have

T
Lo (2,07 2 X 1) 2 6, () + () g (x) + (zue +ZA”* ! ( >> (2 —a

SO ) S D
>0, () + () g (x >+7 21

Z 91/ (X*) — ACZ[}(X*,ZV’* — 07)\1/,*”“%*).
Hence, (x*,2"* =0) satisfies the second inequality of (14). O
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3. Algorithm
In this section, we propose a simple first-order primal-dual algorithm for computing a saddle point

of L ; based on a quadratic approximation of L ; for every v=1,...,N.

3.1. Motivation for approximation of subproblems

We begin by describing briefly why we need to consider an approximation scheme for updating
x = (x¥,27"). To compute a saddle point of L ;(x, 2", \",u”) for every v =1,..., N, we should
be able to determine a point x = (z¥,z7") that satisfies the following first-order optimality (or

simultaneous stationarity) condition of subproblems for fixed (z”,\”, ") and all for v=1,..., N:
Vo £5(X, 27, X)) (x” —3Y) >0, V¥ ek,

It is well known (Facchinei and Pang 2007) that for given (z”*, A\"* u**) computing such a sta-

tionary point is equivalent to the variational inequality (VI) problem of finding x € X such that
L ()NC, 2, )\k,,uk)T (x—x%x)>0, VxeX,

where X := Hf/\;l X,, the Cartesian product of the private strategy sets of all players, and the
mapping L (x, 28, \¥ u*) : X — R™ is given by
leﬁiﬂ (xlj‘,r—l,zl,k’ Al,k”ul,k)
L (x, 2", A, p7) = : ,
Vo LN (2N, g~V 2Nk ANk Nk
with z = [(z1)7,...,(zM)T], A=[(A)7, ..., (AT, and p=[(u)7T, ..., (™)T]".

However, it is challenging to compute the point X using descent methods. In the GNEP setting,
each player’s choice of strategy affects the optimization problems of the others through coupling
constraints and objectives. More specifically, the monotonicity of the mapping L(x, z¥, \¥, u*) with
respect to x = (¥, 27") does not hold in general (Facchinei and Kanzow 2010a, Section 5.2) even if
each component Vv L} ;(x”, 27", 2", \, u”) is convex in 2. This nonconvexity of each P-Lagrangian
in the other players’ decision variables makes it hard to preserve a descent direction for the con-

vergence to the stationary point X that satisfies all components of the variational inequality.

3.2. Construction of Quadratic Approximation Model

To overcome such a computational difficulty, we consider a monotone approximation, denoted by
i’“, to the nonmonotone mapping L in x. The monotone approximation L* of the mapping L can
be always chosen even if L is nonmonotone (see e.g., Chung and Fuller 2010, Luna et al. 2014).
Furthermore, strongly monotone approximation mapping can be derived by replacing each player’s

LY 5 by a simple approximation function and then constructing an approximation L*.
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To this end, inspired by Beck and Teboulle (2009) and Bolte et al. (2014), we first employ the

following quadratic approximation ZZ\B in only x at a given point y:

/I_/\ 17 17 1% 1% 174 1% 1% 12 1% 1% 1% 124 12 ,YV 12 174
LY (%, 2", N s y) =L (y, 27 N 1) + Var L5 (y, 27 N 1) (2" —y )+§Hx —y")?

v v AY Y v v Yo
S,
o v/ #v

/ /|12
v v , (17)

r =y

which is a linearized P-Lagrangian L,; with respect to all other players’ strategies x = (¥, 27")
at the point y combined with quadratic proximal terms that measure the local error in the linear

approximation. Here, 7, > 0 is a proximal parameter. The term »_ ,, V_ /L7, (y,2", A\, p") =

/¢V
Vv L5 (y, 2", A\, u”) represents the gradient at a given point y € R™ in other players’ strategies.
As a direct consequence of the above Lipschitz continuity of V40,(x) and V.g”(x), (2a) and

(2b), respectively, we have the well-known descent Lemma.

LEMMA 1 (Bertsekas 1999, Proposition A.24). Let Assumptions 1 and 2 hold. Then for
v=1,...,N and for fized (2, \", "), VxL;4 is Lipschitz continuous with constant L, >0. Thus

L,
L25(x1) < LY5(%2) + VLl 5(x2) " (%1 — %a) + - llx1 = x|, Vxi,x€X.

Here, we omit fized (2, \", ") for simplicity.

With the parameter «y, > 0 such that ~, > L,, @(x,z”,A”,u”;y) (17) is an upper quadratic
approximation of LY (e, 2", \”, ") around the point y with respect to x = (2,27") and it has the
following properties (see e.g., Beck and Teboulle 2009, Razaviyayn et al. 2013, Scutari et al. 2016).

REMARK 1. The quadratic approximation function E/\gﬁ with ~, > L, satisfies the properties:
(P1) L, (y, 2", N, p”yy) = L (y, 27, A, ) for Yy € X,

(P2) LY, (x,2", A, u"5y) > Ll (y, 27, A, u) for ¥x,y € X.

(P3) /Z\B(o,z”, AV, pu”;y) is strongly convex in x = (z¥,2~") with constant ¢, >0, i.e.,
— — T )
(vxﬁzﬁ(xly ZV? )\VaHV§Y) - VXEZB(X% Zuv )\ya,UJV7Y)) (Xl - XQ) 2 Cy ||X1 - X2|| ) vxlaXQ e X.
(P4) VXE/Z; = (lefz\ﬁ, ceey VQJNZZ;> is Lipschitz continuous on X with constant L, > Yy, 1.e.,
Hvxﬁzﬂ (X17ZU7 )‘Vnuy;Y) - vxﬁgﬁ (X27ZD5 AU),U’U7y)H S Ll/ ||X1 - x2|| ) vX17X2 S X

The properties (P1) and (P2) imply that Zg\ﬂ with v, > L, is a tight upper bound of LY ; around

the given point y. The properties (P3) and (P4) are from the structure of £, ; that is the first-order

approximation of L}, in x at y with quadratic term % ||x — vl
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Noting that for y =x* and (2%, A\** u**) and for v, > L,, @3(0, 2ok \vE kxR s strongly

convex on X, there must exist a unique minimizer x* = (z*"*,77"*) at each iteration k such that
T (ok vk vk vk, JE\NT (v suk _
Y Zéﬁ(xaz a)\ e ,X) (-fU - )ZO, v=1,...,N.

It also follows from (P1) that ZZ\[, (xk, 20k Nk vk xRy < LY (xk, 20k Xk k) We can construct

a (strongly) monotone approximation mapping LF: X 5 R" given by

1ol -1 1k ALk, Lk. ok

Vo L (2t x™h 208 AR puhh xb)
Tk k vk k. k) ._
L (x,z SAT L ,x).—

szv@ (2N, =N, Nk AN Nk 5y
Let us now consider solving the approximate variational inequality VI*(X, f;k) of finding X*:
VIFX, TR . TF (R, 29,00, b %) (x—%5) >0, vxeX. (18)

It is well known (Facchinei and Pang 2007, Proposition 1.5.8) that X* is also a solution to the

system of fixed-point subproblem (or system of nonlinear projected equations) at iteration k:
xF — Px [)A(k—af;k (f{k,zk,)\k,uk;xk)} =0, (19)

where Px(x) = argmin{||z —y|| : y € X} denotes the projection operator onto X and ¢ >0 is a

constant. The constant ¢ > 0 is defined as o = max o, such that 0 <o < (292,,)/ Lunax, where
Ymin = mMmin -y, and Emax = maxNEl,. The choice of o will be further discussed in the context of

=1,....N v=1,...,

the convergence condition in Lemma 2. For fixed (x*, 2% A*, pu*) at iteration k, we use the following

gradient projection to generate a sequence {uk’l} in inner iterations [ =0,1,2,...

ub = Py [u’” oLk (uk,l,zk7)\k’uk;xk)} 7 (20)
equivalently,
FRINES! Pa, [ul,k,l g (Vxlﬁ}xg (xF, 218 AL ) 4oy (Rl — xl’k))]
uk’,l-‘rl —_ ul/,k:,lJrl — PXV [uv,k,l - (kuﬁgﬁ (Xk, Zu,k7 )\u,k7uu,k) +f}/1/ (uu,k,l _ .'L'V’k))] ,
uN,k,Hl PXN [uN,k,l — (VINEQ% (xk, ZN’k, )\N,k,,uN,k) ‘|"YN (uN,k,l _ QZ'N’k))]
(21)
Notice that the structure of Vmufg\ﬁ allows for the inner gradient projection (21) to be imple-
mented in a distributed way since each v can update its own u**! while keeping x* = (x*"* x="*)
fixed. Thus, Algorithm 1 allows each v to choose its own step size o,, v=1,...,N. We also note

that when the private strategy set of each player v includes functional constraints c} (z¥) <0, j=



14 J. Kim: A First-Order Algorithm for GNEPs

1,...,p., they are treated in the same way to handle ¢g”(z”,27") < 0. It follows that the set X,
remains as a simple constraint, and thus the projection onto &, is computationally cheap.

The following Lemma shows that the inner gradient projection scheme (21) converges to the
solution x* of the subproblem (18) at each iteration k and thus enables us to compute a point

satisfying the desired decrease property for every L ; during inner iterations.

LEMMA 2. Let X* be the unique solution to VI*(X,L*) (18) and x* # X*. Let {ub'},5, be the
sequence generated by gradient projection (21) with the step size o,. Suppose that forv=1,... N,
the parameter vy, is chosen such that v, > L, where L, is the Lipschitz constant of Vxﬁgﬁ. Then,

(a) for o := _max o, satisfying 0 <o < (2’ymm)/LmaX, where Y, = i} r{lianyy, Loy = maxNL,,,

1,...,.N =1,...,

and Ll, 18 the Lipschitz constant of V ,Caﬂ, the sequence {u®'};5; converges to xX*. That is,

Huk’l*l—ﬁkHSTHuk’Z—QkH, 0<T<1, (22)

where T = \/1 — 2%min0 + EQEmaX.

us, € mner graaient projeciion can compute a™ suffictentty close 1o X© suc a
b) thus, the i dient jecti 21 te uFttt jently close to XF h that

v kJl+1 v,k v,k v,k v k v,k v,k v,k
o (U 2R NTE ) < LY (T, 2 AT )

for everyv=1,...,N in a finite number of iterations.

Proof. (a) Fix k>0 and omit the iterates (2%, \*"¥ u**) for simplicity in the proof. Let 7"

be vth component of X*. By the fixed-point characterization of z***

i,\u,k — PXV |:§;,\V,k o O.vay Zﬁ (ﬁl/,k:; xk:):|

and the contraction property of projection operator Py, [¢], we have that for all v =1,... N,
— — 2
R I o [u’” = 0 VLl (W5xE) | = P, [7 = 0,90 £7, (%)
- (23)
< H [ — 0,V LY (uk’l;xk)] - [:?”’k - UVVIVE } H

By expanding the last term on the right, the above inequality can be rewritten as

T
N 2 N 2 — — L
Hu”’k’l - :U”kH < Hu”’k’l — m”’kH — 20, (Vzuﬁ”g(uk’l;xk) — Vzuﬁ”g(xk;xk)) (u”’k’l — m”’k)

2

(24)

xV

aﬁ(uk’l;xk) — Vzuﬁgﬁ(ﬁk;xk)

Since £, o 1s strongly convex in x with constant ¢, and V Cv o5 1s Lipschitz continuous with constant

L, ( (P3) and (P4) in Remark 1), we can estimate the second and third terms on the RHS of (24):

<un£/g;3 (u*hx") — kuz\;ﬁ (ik;xk))T (utt —z"F) > ¢, Hu”’k’l -z (25)
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|V 22 (ux0) = Vo £ (R4 | < T it 2. (26)
Note that since £, v is a proximal linearized function with the quadratic term % ||x — xF HQ, we can

take 7, = ¢,. Substituting (25) with v, = ¢, and (26) into (24) yields
Huu,k,Hl - Eu,kHZ < (1 — %0, +02L2) Huu,k,z - Eu,kHZ'

Notice that (1 —271,0,,+02L2) > 0 is satisfied since L, > v,. Now, setting & : max o, and

1/—17 R

observing that (1 —27,,54—82112) < ( — 2%Ymin0 + 0 Lmax), where Ymin = mmN% and L. =

[RRRE}

max Ly, it immediately follows that

v=1,...,.N

k12 112
Huu,k,z+1 _xu,kH < (1 2’Ymm<7+02L2 > Huu,k,l _xz/,kH _

max

Thus, for 0 <3 < (292,,) /Lumax implying that (1 — 20 + 02 L2 ) < 1, we obtain

max

vk, l+1 .%\u,k H S T Huu,k,l o i}u,k

|, 0<7<1, (27)

e

Therefore, by summing over the above inequality for all players

X*

where T = \/1 2Ymin0 + O'2Lma
from v =1 to N, we deduce the desired result (22).

(b) From the property (P1) in Remark 1 with y =x", we know that
Z’ZB (Xk,z”’k,)\“k,u”’k;xk) :Egﬁ (xk,z“k,/\”’k,u”’k) , v=1,...,N. (28)

Since x* # X" and u*! — X" by the result (a), the inner gradient projection (21) can find a point

kl+1

u close to X* such that

EZﬁ (uk:,l-‘rl, Zu,k’ /\V,k“uu,k;xk) < EZg (Xk,ZV’k, )\”’k,,u"’k;xk) , V= 1’ e N, (29)

k,l+1

in a finite number of iterations. By (P2) in Remark 1 with y =u , we have that for any v, > L,,

‘C(Vyﬁ (uk,l+1,zv,k’ )\u,k,luu,k) S Zz\ﬁ (uk,H—l’ Zu,k’ )\V,k"uu,k;xk) , U= 1, o ,N. (30)
Combining (28), (29), and (30) yields

v kJl+1 v,k v,k , vk v k v,k v,k v,k _
O(ﬁ(u AN NS )<£a5(x,z SAYT 1 ), v=1,...,N.

Hence, we can derive the desired decrease property of every Ly ; during inner iterations. [
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3.3. Description of Algorithm
We are ready to formally present our distributed algorithm that exploits all the features discussed.

The steps of the proposed algorithm are summarized in Algorithm 1, where the choice of the
3Ly
Bu
Algorithm 1: P-Lagrangian based Alternating Direction Algorithm (PL-ADA)

proximal parameter v, > L, + for updating = will be discussed in detail later (Lemma 4).

~ 2
Input parameters: o, >0, o, >0, 8, >0, 0 € (0, 2’yfmn/Lmax>, and v, > L, + ngu.

Initialization: Set k=0, and define (29, 2*°, X9 u*9) with A =p*° v=1,... N.
Step 1. Let iteration k be fixed and set u®° = x*.
For every v=1,..., N, and for fixed (x*,2"* A% 1u**) compute u according to the
following gradient projection scheme on Ly ; for inner iterations [ =0,1,2,...
while HPX [uk,lJrl _ O.ik(uk,lJrl’ 2+ )\k’uk;xk)} gk

—

Lg (D NN et o (xF, 20k \vk Ry >0 do

v,k,l+1

>¢€ or

v

= PXV [uu,k,l —0, (vaﬁzﬁ (Xk, Zu’k, )\V’k,lu,y’k) —0—’7,, (uy,k,l _ (L.V’k))} )

1 - .
urEE —p, |:uu,k,l — o, VoL, (uu,k,l’Zu,kj)\u,k”uu,k;xk)}

end while .
Set xFH! = ubtH = [(ul AT (VR T

v,k+1

Step 2. For v=1,..., N, compute z by an exact minimization step on Ly 4

zu7k+l — argmin {EZﬂ (XkJrl,ZV, )\mk’ MV,]{))} — ()\wk _ My7k)/a1/-

2V eRMv

Step 3. For v=1,..., N, update (A", u**+1) by exact maximization steps on L,

1 +
)\V,k:+1 = arg max {5(1;6 (Xk+1, Zl/,kJrl’ /\V,Ml/,k)} — MV,’C 4 79”(X1€+1)
A”E]R:_”V 51/
uV,kﬁ—‘rl = argmax {‘C(’;ﬂ (Xk+1, Zy,k+1, )\u,k—i—l’ﬂv)} — )\Il,k—‘rl.
uY ERMy

Step 4. Set k <+ k+1 and go to Step 1.

The main computational effort of Algorithm 1 is involved in Step 1 to update primal iterates

k41

from x* to x**1. If X*¥ # x*, by Lemma 2, we can find a point u satisfying both conditions:

k,l+1 Tk (. kI+1 _k vk k. k E,l+1
pr[u’+ —oL (u’*,z,/\,u;x)]—u”r

<e (31)

Zﬂ (uk,l+1,Zu,k’)\u,k,ﬂu,k;xk) < ﬁZﬂ (Xk,ZV’k,)\V’k,/,LV’k) , V= 1? L ,N, (32)

El+1

in a finite number of inner iterations. When the descent condition (32) is satisfied, u is set to

x**+1. Consequently, the decrease of LY (xk, 20k Xk kY value is obtained, that is,

v k+1 v,k \v,k , vk U [kl vk vk k. Jk v k vk \vk , vk
aﬁ(x AN L) )Sﬁgﬁ(x A N ,x)<£a6(x,z SAYT 1 )

forv=1,...,N (see Lemma 2 (b)).

The next step is to update z” by taking exact minimization step (Step 2) on L.
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»h+1) " the multipliers are

After the minimization steps have been carried out, given (x"*! z

updated by exact maximization steps on L{ ;. The updates of A\¥ and p” take the explicit forms:

Jr
)\V,k+1 — Nu,k + igu(XkJrl) , Nu,kJrl — )\V,kJrl’

By

We remark that a point satisfying the fixed-point condition (31) does not necessarily guarantee
that the descent condition (32) holds. Hence, the algorithm keeps updating iterates u*! until the

condition (32) is satisfied even after condition (31) is met, which may require many inner iterations.

4. Convergence Analysis

In this section, we establish the convergence results of Algorithm 1. We prove that the sequence
generated by Algorithm 1 converges to a saddle point of L} ;(x¥, 27", 2", \, ") for v=1,...,N.
In particular, our analysis proceeds with the steps:

1. We show that || A*#*! — A**|| can be bounded by ||x**' —x*|| (Lemma 3), which is exploited
to show {L},} is nonincreasing and convergent (Lemma 4). Then we establish key results;
boundedness of {x*}, lim;_, [|x**! —x*|| =0, and then boundedness of {\**} (Theorem 3).

2. With the bounded sequences, convergence to an equilibrium of the GNEP is proven; we show
that any limit point of the sequence is a saddle point of LY, ; (Theorem 4).

3. We establish the global convergence; the generated whole sequence converges to the saddle

point under the assumption of Kurdyka-Lojasiewicz (KL) inequality (Theorem 5).

4.1. Key Properties of Algorithm 1
We first derive an important relation on the dual iterates A** with the primal iterates x*; the

difference of two consecutive dual iterates can be bounded by that of the primal iterates.

LEMMA 3. Let {(x””",z””“,)\”’k,u“’“)}iv:l be the sequence generated by Algorithm 1. Then,

H)\u,k+1 . )\l/,kHQ < Li_?]"

e

xFr kaQ, (33)

where Lyv is the Lipschitz constant of g* and B, >0 is the parameter of —%” A — /ﬂ’||2 in L5

Proof. Note that since LI, is strongly concave in A\” for fixed (x,2",p"), there
exists a unique maximizer, denoted by X"(X,z”,,u”), such that Egﬁ(x,z”,X”(x,z",u”),u”) =

max v egmv L5 (x,27, A", ) . From the update of Ak defined (as maximizer) in Step 3, we have

T
v}\uﬁgﬁ (Xk—i-l’Zu,k—i—l,)\u,k—i-l’uu,k) ()\l/,k o )\u,k+1) S 07

Vkvﬁgg (Xk, Zu,k’ )\l/,k’MV,kfl)T ()\y,kJrl _ )\V,k}) S 0.
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By the definition 2%#1 = 2" =% i) Step 2 with A#+1 = 41 in Step 3, we have z/5+1 = 2F = 0
for A0 = ;0. Adding the above inequalities and a direct computation of Vv £, give

(Vaw L (3 2R NARHL k) 0 (2 Ak k1)) (el ket

= (9" (1) =g (x*) = B, (AT = XY 4 B, (o — o)) T (R = Ay

= (9" (") =g (x)) " (WK = A FH) 4 B, AR X B, (k- i) (0 =) <,

—
> H)\u,k-’—l,/\u,k ||2

(34)
where, to bound the third term, we used Lemma 1(a) in Nedic et al. (2010); (z —y)* (z — P[z]) >
| P[] — 2| with & = p”*, y = p*=1, Plz] = A»¥*1, and the fact p** = A**. Specifically, since

AVRHL maximizes L2 4(xF, 28 A k) = 0, (x5 4+ (W) T g¥ (xFH1) — 22 || A — p ? we have

au(karl) + ()\v,k+1)Tgy(xk+1) . % H)\u,k+1 o ,U,V’kHQ

k+1 k) k 2
v, .Y

~ T
> 0,4 (R 240 ) g () - A )

/)\\V (Xk+1

and (AWFHD)T gv (xEHL) = XV (xFHL R Ry T g (xB+1) Tt thus follows that

H)\v,k-&-l . MV,kH S ‘ }\\u(xk-&-l’ Zk+1 Mu,k) vk

) K

)

which, by definition of projection (Bertsekas and Tsitsiklis 1989, Section 3.4), means that A»**!

can be viewed as the projection of 1% onto the solution set A”(x**1, z5+1, ;*F) We thus see that
(Mu,k . Mu,k—l)T ()\l/k AV k+1) ()\l/k )\u,k—l)T ()\y,k . )\l/,k+l) 2 HAv,k—Q—l - )\u,k”2 Z 0.

By the Cauchy-Schwarz inequality, we also get that ||A"" — A»A=1|| > || \»*+1 — A\»*|| “implying the

stable sequence of the multipliers. Rearranging terms in (34), we obtain
B, H/\u,kﬂ )\ukH < ( ( k+1) gu(xk))T ()\u,k+1 . )\u,k)’

which leads to

H)\yk+1 )\ka< Hg k+1)_gy(xk)H(i§i)£ —x*,

where (i) follows from the Cauchy-Schwarz inequality; (i¢) is from the continuous differentiability
of g¥(x) (Assumption 1), implying that ¢g¥(x) is locally Lipschitz continuous with constant L.
Squaring both sides of the inequality gives the desired result (33). O

With Lemmas 2 and 3, we prove that {£},;} can be monotonically decreasing and convergent.
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LEMMA 4 (Sufficient Decrease and Convergence of {L!;}). Suppose that Assumptions 1
and 2 hold true, and let {(x””“,z"’k,)\”’k,u””")}il be the sequence generated by Algorithm 1. Then
forv=1,...,N, we have

L2l/
Zﬁ (Xk+1’Zu,k+1,Au,k+1’MV,k+1) S EZB (Xk,ZV’k,)\V’k,ILLV’k) . % <’}/,, . LU . 3657 ) ka+1 _ XkHQ,
v

—
v

X — x’“H2 in LY, and
2

where L, is the Lipschitz constant of VL, v, >0 is the parameter of %

B, >0 is the parameter of—%” IIA— ,u||2 in Lg. If v, >0 is chosen such that v, > L, + 3;5” , then
the sequence {L 3} is nonincreasing and convergent.
Proof.  Consider the difference of two consecutive sequences of LY 5:
Zﬁ (XkJr172:1/,k+17 )\V,]C+17MU,I€+1) o Zﬁ (Xk,ZV’k, )\u,k7uu,k>
— |: zﬁ (Xk+1,ZV’k+1,/\V’k,/,LV’k) _ L"Z@ (Xk,ZV’k,)\V’k,/J,V’k)] (35)
+ |: Zﬁ (Xk+1,ZU7k+1, )\u,k+1)uu,k+1) o Lzlg (Xk+1,ZU’k+1, Au,khuu,k)] )
For the first term in (35), recalling the descent Lemma (Lemma 1), we have
v v v T Ll, X 2
Lop (X)) < Lo () 4 VoLl (x7) 7 (" =) 4 7 [ = x| (36)

2

Here, we omitted (2%, \*, u**) for simplicity. Since v, > L,, by Lemma 2 and Step 1, we have

o v v T Yo o . v
7 (6 0) = £, () 4 W () (o) 4 10 oo < 2 (et = £, ()

Thus,

Tty ()" (1 ) <2 b

By substituting the above expression into (36) and using the definition of 2***1 in Step 2, we get

£ (1, 2R N R (o 2 X i) < (= L) [ P (37
Next, consider the second term i (35):
o (KB PR L Ry (kL kel vk k)
. )\u,k)Tgv (x+1) — % H)\u,k+1 _ Mu,k+1HQJ+% H)\u,k _Mu,kH27 (38)

=0 —0
where it follows from Step 3 that the second and third terms on the right-hand side are zero.

We now focus on deriving an upper bound for the term (A\"F+1 — AvkyE gy (x**1). To this end,
we need to consider two cases: " + 7-g"(x**1) > 0 and p** + 5-g"(x"*1) <0.

+
Case 1. p** + 5-g¥(x*1) > 0. Since A" = [,u”’k + ﬂ%g”(xk“)] and \"* = "% we obtain

()\u,kJrl _ Ay’k)TgV(XkJrl) _ 61/ H)\u,k+1 _ )\ukaQ . (39)
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Case 2. " + 5-g"(x*1) <0. In this case, \"**' =0 and x"*' is feasible because g(x**') <0.

For convenience, we define
Ak} = ()\u,k+1)Tgu (Xk+1) o (Au,k)Tgu(Xk)‘
By subtracting and adding (A**)" ¢g”(x**1) to the RHS and using the fact that A\*#+1 =0, we have

18] = H ()\u,k+1 _ )\u,k)Tgy(Xk—‘rl) (YT (gy(xk—‘rl) _gv(xk)) H

> H()\u,kﬂ - )\V,k)Tgu(Xk+1) - H ()\V,k _ )\v,kJrl)T (gu(ka) _gu(xk))H. (40)

From the feasibility of x*', we have that for any \¥ € R, p¥ € R™ and 8, >0
NT v/ k+1 61/ v v||2
(A7) g7 (™) = - IV = p”[" < 0.
Thus, we can get with \¥ = A\»**1 and ¥ = A** that

()\V,k+1)Tgv(Xk+1) S % HAV’k+1 _ )\u,k”z .

On the other hand, since A% >0 maximizes LY;(x*, 2% X\, u"F~1) =6, (x*) + ) g (xF) —
Be[Av — ,u,"’k*IH2 for given (x*, u*=1) and the third term,
2 1 V,kK— v
_& H)\l/,k _Mu,k—l“z _ _ﬁ Hgy(xk)y if pott 4 5%9 (x*)>0
2 —Ze ||| otherwise,
is a given constant, we have that (\"*)” g” (x*) > 0. Hence,
v T 4 v T 4 BV v v 2
Il = [ () g () = ) T ()| < 5 I x| (1)

Combining (40) and (41) and invoking Lemma 3, we obtain

H(/\u,kH - )\u,k)Tgu(Xk+1) < H ()\v,k B )\u,k—‘rl)T (gu(xk—H) _gu(xk))H n % H)\u,kﬂ _ )\u,kHQ

2
<I, H)\u,kJrl . )\V,kH ka+1 _XkH + ;’gu sk +1 _chH2 (42)
2
T

Notice that the above upper bound on H(A”’k“ — k)T gr (kY

includes the upper bound in

Case 1. Therefore, by combining (37), (38) and (42), we obtain the desired result:

3L2

1 2
Zﬁ(xk+l’ Zu,k+1’ )\u,k+1)uu,k+1) S E(l;ﬁ(xk7 Zu,k’ )\V,k”uu,k) - 5 </7V - LV o B) ka+1 - Xk‘
v

)

which implies that the sequence { LY, (x*,2¥, \"*, 1i”*)} is monotonically decreasing if v, is chosen
3L7
Bu

such that v, > L, + =2 with a suitable choice of 5, > 0.
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Next, we show that {L};} is convergent. We know from Theorem 2 that a saddle point of LY,
exists. Let (x*,2"*,\"*,u"*) be a saddle point of L} ,(x,z",\",u”). By the updating rules for

(AR R L) defined as maximizers for the updated (x¥1, 2%1) | we see that
Zﬂ (XkJrl,ZV’k+1,)\V’k+1,,u,V’k+1) > E(z;ﬁ (xk“,z”’k*l,/\”’*u”’*) > E;ﬂ (X*’ZU,*’)\V,*,MV,*) > —00, (43)

which implies that the sequence {L%,(x", 2", A\"* p**)} is lower bounded by a finite value of
s (X5, 277 A% ). Thus, with the choice of 7, > 0 such that v, > L, 4 2 , the sequence
{85 (xF, 278 Xk i"*) ) converges to a finite limit, denoted by £¥, as k — oc. D

Next, we provide our key results that the generated sequence is bounded and asymptotic regular.

THEOREM 3. Suppose that Assumptions 1—3 hold and that there exists a GNE of the GNEP (1)
satisfying the KKT conditions (3) for v=1,...,N. Let {(a"*, 2% \"*, ”’“)} be the sequence
m . Then,

generated by Algorithm 1 with the parameters set to v, >0 such that v, >
(a) the primal sequence {Xk} is bounded;

(b) the sequence of the multiplier {X’*k} 1 bounded;

(c) it holds that .-, ||x*** — x’“H2 <oo and Y, [[AEH — )\"’kHQ < 00, and hence

lim ka+1 —XkH =
k—oo

0, lim H)\”’kJrl - )\”’kH =0, and lim H,u”””l — ,u”’kH =0. (44)
k— o0 k—o0

Proof. (a) Recall from Theorem 2 that a saddle point (x*,2"*, A", u"*) of L 5(x,2", \", ")

exists. From (43) in Lemma 4, we know that L,(x*, 2% A% u**) is lower bounded by

Y (X5, 2% A%, ). Since LY 5 (xF, 2%, X%, u”*) is nonincreasing, it is also upper bounded by

a finite value, i.e, £4;(x", 2%, A%, u**) < co. We thus have
—00 < E;ﬂ (XkJrl’ zu,kJrl’ )\V7k+1’ Mu,k+1) — 9(Xk+1) 4 ()\l/,kJrl)Tg(XkJrl) < 400.

Hence, {x*} is bounded due to the coercivity of 6,(x) (Assumption 3) with the facts A“¥*1 >0
and ()\V,k+1)TgV(Xk+1) 2 0.

(b) Note that since the function \* — L,5(x, 2", A", ) is strongly concave, there exists param-

eter ¢) >0 such that for \»*, \»**1 € R and for given (x**1 2~ 1/, »k)

>/

v UV, % V. v 1% V. v v, v V% 12 V 1% V% 2
aB(A " ,k) Sﬁaﬁ()‘ ,k+17M ’k)—i-V)\v a,@()‘ ’k“,u ,k)T()\ A\ ,k+1) ? H)\ Jk+1 —\v

)\
v 1% 14 v V% v 17 U,k v v U,k v v, U,k 2
L2 (N 1R) < L8 (A 1 R) 4 Vw25 (A%, g F) T (AR =\ )—72 [ A\

where we omitted (x**1, 2***1) for notational simplicity. Adding the above two inequalities yields

e X = N [P < (Vg N i) = Vo L5 (0, M) (A7 = Av491).
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Using the Cauchy-Schwarz inequality and the triangle inequality, we obtain

H)\V,k-{-l O\

[V a0 L85 (NEHL, Ry — W L2 5 (A7, )|

S H/BV()\U*_ u,)_g k+1 H< H)\uk A\V*

1
>\
)1

7 k+1)” .

+ ol

Cl/
where the inequality (a) comes from the definition of A***! in Step 3, implying that A\***1 >
ok + B%g(xk“). Since {x*} is bounded and g¢”(x) is continuous differentiable (Assumption 1),
there exists D, > 0 such that Hg xk+L) H < D,. From the update of p»*+! = \*+1 in Step 3, we
have \¥ = p* for any k > 1. By taking ¢} = 3, we have

HAu,kjtl _ )\u,*

S H)\V,k _ )\V,*

+D,/p,.

Therefore, the sequence {)\”’k} is bounded on any subset of R’".

(c) Invoking Lemma 4, we have that for all k> 1

Y ka+1 _ XkH2 < E;B (Xk’ Zu,k’ )\V,k”uu,k) . EZB (Xk+17 Zu,k+17 )\y,k-{-l"uu,k-&-l) 7

3L v

where p, := % ( —-L,— ) > 0. Summing the above inequality over k=1,..., K, we obtain

Z HXk:Jrl _XkH2 S : (Egﬁ (Xl,ZV’l, AV,I’MV,l) _ (I;ﬁ (XK+17ZV,K+17)\U,K+17MV,K+1))

< (et (e X =6, ().

where the last inequality is from (43) and L7 (x*, 2%, A", u**) =0, (x*). Letting K — oo yields

o0

2
E Hx’”l —x’“H < 00,
=1

from which, along with Lemma 3, it also follows immediately that Y, | [|A7*+! — A»# H2 < oo and

PO Hu"*k“ — ,u"”“HQ < 00. Therefore, we can deduce the desired results in (44). O

4.2. Main Convergence Results
We are ready to establish our main convergence results. We first show that any limit point of the

sequence produced by Algorithm 1 is a saddle point of L, for all v=1,..., N.

THEOREM 4 (Subsequence Convergence). Suppose that Assumptions 1—23 hold and that
there exists a GNE of the GNEP (1) such that the KKT conditions (3) are satisfied for every
v=1,...,N. Let {(z"*, 2% \"*, ”k)} be the sequence generated by Algorithm 1. Then, the
sequence { ¥ ,z”’k,)\”’k,;z”’k)}uzl converges to a point (X,z" ,)\ ,[1") satisfying the saddle point
condition (8).
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Proof. Since the sequence {(x",z"* A"* ;”*)} is bounded, there exists at least one limit
point. Let (X,Z,A, %) be a limit point of {(x*,z"* X\** p**)1 and let {(xFs,z"*i A"k i)}
be a subsequence converging to (X,%,\,7i1) as j — oo. From Theorem 3(c), it also follows that
{(ij+1’Zu,kj+1’)\u,ijrl,uu,ijrl)} — (%,Z,\,7) as j — 0.

First, we show that a limit point (X, E”,Xl’,ﬁ”) satisfies the second inequality of the saddle point

condition (8). Because {z*i*!} — 7" and {z*i} —T" as j — oo, we have from Step 1 that

—

7 =P, [f” — 0,V £45(%, 2, N 7 %) | -

The limit point T” is equivalent to a solution of the VI (Facchinei and Pang 2007, Prop. 1.5.8):

Vo L05(%, 2N 1 %) (27 —7) >0, Va¥ € X,.
Using the fact that unzgé\ﬂ(i,é”,xy,ﬁ”;i) = vwﬁgﬁ(i,z”j”,ﬁ”) and the convexity of L7, with

respect to 2, we obtain the first-order optimality condition for L :
Vo L%, 2N 1) (27 —7") >0, Va’€X,,

which implies that (X, E”,Xy,ﬁ") satisfies the second inequality of the saddle point condition (8):
Lhs(T, 7" 2N ) < Log(a, 702N 1Y),

Similarly, by the definitions \***! and p***! (as maximizers) in Step 3, the limit points (A, 7z")

maximize L}4(X, 2" (A", "), \”,p”). We thus have that

Vaw L5(%, 2, X 1) (AW = X)) <0, YAYeRT™,
Vi L%, 2 N 1) (u =) <0, Yu' eR™.

Consequently, (X, E",Xu,ﬁ”) satisfies the first inequality of the saddle point condition (8). O
We now strengthen the subsequence convergence result, under an additional assumption that 6,
and g? satisfy the Kurdyka-Lojasiewicz (KL) property (Lojasiewicz 1963, Kurdyka 1998). Before
proceeding with global convergence, we briefly review the KL property.
DEerFINITION 3 (KL PROPERTY & KL FUNCTION). Let § € (0,+00]. Denote by ®s the class of
all concave and continuous functions ¢ : [0,d) — R, which satisfy the following conditions:
(i) ¢(0)=0;
(ii) ¢ is continuously differentiable (C') on [0,d) and continuous at 0;

(iii) for all s€ (0,d):¢" >0.
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A proper and lower semicontinuous function ¥ : R™ — (—o0,400] is said to have the Kurdyka-
Lojasiewicz (KL) property at w € dom OV := {u € R": 9¥(u) =0} if there exist § € (0,+00], a
neighborhood U of w and a function ¢ € ®;, such that

@' (U (u) — (@) - dist (0,00 (u)) > 1

for all w e U(w) N{u: ¥(u) < ¥(u) < ¥(u)+46}. The function ¥ satisfying the KL property at each
point of dom OV is called a KL function.

LEMMA 5 (Uniformized KL Property (Bolte et al. 2014, Lemma 6)). Let Q be a com-
pact set and let U : R™ — (—o0,00| be proper, lower semicontinuous function. Assume that VU is

constant on Q) and satisfies the KL property at each point of Q. Then there exist € >0, § and ¢ € P

such that for allw in Q0 and all u in the following intersection:
{u e R" :dist(u, Q) <e}N[¥(w) < ¥(u) < ¥(u)+ 9] (45)
one has,
O (U(u) — ¥ (u)) - dist(0,0¥ (u)) > 1. (46)

If ¥ is continuously differentiable and ¥ (@) = 0, the inequality (46) can be rewritten as
o' (W (u) = V(@) [V¥(u)] 2 1.

With the uniformized KL property, we can prove that the generated sequence has finite length,
and hence the whole sequence converges to a saddle point. The techniques developed in Bolte et al.
(2014) are extended to our smooth constrained game setting with some modifications.

In order to exploit Lemma 5 for proving global convergence, we use the size of the gradient of
the P-Lagrangian, denoted by ﬁﬁaﬁ, and derive an upper bound on the gradient. Noting that 6,
and g” are continuously differentiable, z” € &, and A\ € R, we consider the projected gradients

of L7 5 in " and \” for -component and A\”-component of 6/3&5:

%muﬁgﬁ(x, 2V A ) =" — P, [x” — VL 5(x, 2", X’,,u”)] ,
ﬁ)yﬁgﬂ(x,z”,/\”,u”) =\ — [)\” + VL7 5(x, z”,)\”,,u”)}f

Let us now define the projected gradient of LY, at (xFH1, z7F 1 X»FH1 1wkt ag

k+1 v,k+1 v,k+1 v k+1 v,k+1 v,k+1 v,k+1
Qo x — Pa, [@ =V L85(x", 2 A Y )]
k+1 v k+1 v,k+1 v,k+1 v,k+1
=~ . vkl q.v vz"ﬁaﬂ(x ) % 7A [ )
v£a5(w 7 ) = k+1 - )\V,k+1 )\u,k—i—l v £1/ k+1 v,k+1 )\u,k—i—l v,k+1 + ’ (47)
Qv — [ + VarLlys (x" "z , L )]

k+1 v k+1 v,k+1 v,k+1 v,k+1
Qv Vi L g(x" 2 ) i )
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It is clear that if %E’;B(W”’k“) — 0, a saddle point of LY ;(w") is obtained. We derive an upper
bound on ﬁﬁgﬁ(w”’k“) in terms of the generated iterates. In addition, we recall that by Assump-

tion 2 imply there exist constants My, and My, such that

HVWQ,, (Xl)—quﬁu (Xg)” SMVGV ”X1 —Xg”, Vxl,XQEX, (48&)

||Vzugy (X1>—ungu (Xg)” nggu ||X1—X2||, \V/Xl,XQ EXV, (48b)

LEMMA 6. Let {w”’k}i\;l be the sequence generated by Algorithm 1. Then, for everyv=1,..., N,
there exist constant C, >0 such that for all k>0

IVLE (W) < Cy 3+ — x|, (49)

Proof. We first estimate an upper bound for ¢ in V£ 5(W* 1), Recall that there exists a
unique solution %* of VI*(X,L*) in (18) at each iteration k (Lemma 2), and denote by Z"* the vth

component of X¥. From the fixed-point characterization of 7*"*, we know that for every v =1,..., N,
TV =Py, [/{L'\V’k — (quﬂu(xk) + Vo g” (XF)ANF 4, (98 — a:”k))] .

Hence,

v,k+1 Al/ ’CH =+ HP [Al’ k sz/@y(xk) _ Vmug"(xk))\”’k . ’yy(?ﬁ”’k B 1.1/,]@)]
iPXV [m”,k—i—l _ ungu(xk—O—l) o vagu (Xk+1))\y7k+1:| H

[

(%) szx,k+1 _ ./Z‘\U’k H 4 H [C/L‘\V’k _ meey(xk) _ vmugu(xk))\u,k _ ’YV(C/U\V’k _ xu,k)]
. |: v,k+1 v 9 ( k+1) - vajygu(xk+1)Au,k+l} H
2 (2+7) [[x* T = xF ||+ || Var 0, (x5 T) = Viar b, (xF) 4+ Vv g? (xF AR — Vo0 g” (kM)A

where (a) follows from the non-expansive property of the projection operator, and (b) is due to

the facts that H:U”’k“ — f”’kH < Hw”’k“ — x”kH and Hl‘”’kJrl — ZL‘VkH < Hx’“+1 —xF

and subtracting g”(x*)\***! and using the triangle inequality, we obtain

[ ) |3 = x| [| Va0, () = V0, (x5 |
+ vaygy(xlﬁ_l))\y’k—i_l _ vxygl/(xk))\l/,k-i-l H 4 Hvzygl/(xk))\u,k-l—l v g )\IJ k H

< (2473 [|[xH = x| + My, ||x

XkH + MVgVBAV

E (50)

XkJrl o XkH 4 RgV H)\V,k+1 o )\u,k”

Ry L,
S (2 +’YV -+ Mng —+ MvguB)\u -+ glgg) ka+1 _ xk
where the second inequality is due to the Lipschitz continuity of V.0, and V, ¢” and the
boundedness of {Xk} and {)\”’k} implying there exist constants By» := max;ey HX’”“H and R, :=

maxen HVzug H the last inequality is from H)\” k1 )\””fH < Lﬁ% x

x*|| (Lemma 3).
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Next, by the definition \***1 € R as a maximizer, \**! is characterized by
+
)\V,k+1 — [Au,k+1 + vx/ﬁzﬁ(xk+17 Zu,kJrl’ Au,k+1”uu,k)] ,

which, together with the nonexpansive property of the projection onto R} and Lemma 3, yields

[en

{ = H [)\V,k-l-l + (g”(xk-‘rl) _ zl/,k-{-l) _ BV(AV’IH_I - ,Uy’kﬂ +
— [N (g7 () — 22 — B (AR — i) + H

S H/By(,uy’kJrl _MV,k:)H S Lgu Xk+1 _ka . (51)

v,k+1

In addition, recalling that the definitions of z in Step 2 and p***! in Step 3, we have

o = 3 4 o, &
gk || = ]2+ + B, (A — ke | =0, (53)

Therefore, summing the inequalities (50) and (51), we deduce that for all k>0

= 2 |

y— v 174 v
i=a¥ 2V AV

H%E(Wu,k-&-l)

q;/,k:JrlH S Cu ka-i-l _ XkH

Ryv L
Bu

with positive constant C, =2+, + Myg, + My, By + &+ L. O

THEOREM 5 (Global Convergence). Suppose that the assumptions required for Theorem
hold. Let {w”’k = (xk,z”’k,)\”’k,u”’k)}ivzl be the sequence gemerated by Algorithm 1. If 8, and g*,
v=1,...,N, satisfy the KL property, then {Wu,k}il has finite length, i.e.,

o0
E Hw””“rl — w”’kH < +o00,
=1

and the whole sequence {(m”’k,z”’k’,)\”’k,p”’k)}i\; converges to a saddle point (X,z°, X ,1i") of Ll

1
Proof. Let W*:=(X,z",\ ,7i") be a limit point of {w"k = (x*, 2wk Ak vk)} that is bounded
for every v =1,..., N. Then, by the continuity of L7 ;, we have

lim L;ﬁ(wm) =L, (W"). (54)

k—o0

In the following, we consider two cases:
Case 1. Suppose that there exists an integer & such that E‘C’Yﬁ(w”’%) =L;y(wW") forv=1,...,N.
Since the sequence { L%} is nonincreasing, we have that £ ,(w"*) = LY ;(W") for all k > k. Then,

we have from Lemma 4 that for any ¢ >0

Oy ka+t _ ka2 < E;ﬁ(wu,k) _ /_,wﬂ(WV’kH) — 0’

[0
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which leads to
xM 1 —xkF =0, Vk >k, (55)

From Lemma 3, we also obtain that A»**! — \»* =0 and p**! — »* =0 for all k > k. Therefore,
{whk = (xk, 27k XF 17F) 1 must be eventually constant (stationary), and it thus has finite length.
Case 2. Consider the case where such an integer k does not exist (and every {w"*} is non-
stationary) for v =1,..., N. In this case, we first show that the P-Lagrangian L}, is finite and
constant on the set of all limit points w,(w}) of {w”’k}, and then apply Lemma 5 to show that
{w””“} is a Cauchy sequence and convergent.
First, since the sequence {L£/,} is nonincreasing, we have LY;(w"") > L (W") for all k. This,

along with (54), implies that there exists an integer ko such that for any e >0 and ¢ > 0:
LW < LLg(wWhF) < L 4(W)+6  and  dist(w"",w(wy)) <e for all k> ko, (56)

where the second comes from the fact that limy_, . dist(w""* w(w})) =0 (see Theorem 4). Thus
{w"*} belongs to the intersection in (45) with Q = w,(w}) for all k > ko, and Q = w, (W) is
nonempty and compact. Recall that {L;} is bounded below by the value of L, at a saddle
point, and hence {£;} converges to a finite limit, denoted by L. It then follows from (54) that
LY =L} ;(W"), which shows that L{ is finite and constant on w”(Wy).

Thus, since L!; is a KL function, by applying Lemma 5 with Q = w”(wg) and 0¥(u) =
6£gﬂ(w”’k), we get that for any k > ko

0 (L0, (WHR) = L2 (%)) - dist (o, %cgﬁ(w%’f)) > 1,
which combined with Lemma 6 gives

1 1
¢ (Lop(W"r) = Los(W")) > = > —.
( B B dist <O,V£Zﬁ(wy’k)> C, ||x* —xk=1||

(57)
On the other hand, since ¢ is concave function, we know that

@ (Log(W"h) = L25(W")) =@ (Log(wH ) — L15(W"))
> ¢ ( Z@(Wy’k) - Zﬁ(Wy)) (EZB(W””“) - ;ﬁ(wy’kﬂ)) .
For convenience, we define for any p,q € N
Dpgi =9 (Log(W"P) = L1 5(W")) =@ (Lis(WhT) — L 5(w)) -

Then we get
i > ¢ (L2 (W) = L0, (W) (£ (W) — L2 (w")) (59)
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Recalling that £,(w"*) — L, (w"F+1) > p,, [|xF+1 — XkH2, we combine (57) and (58) to obtain
k1 _ gk H2
Cy Jxk — x4

xF — x| gives

Multiplying the above inequality by %

HXHI —XkHQ R AVREE] ka —X’HH where &, =C,/py,

and hence 2 ||x* —x*|| < 24/&, Ap 1 [xF —xF1]|. Using the inequality 2v/ab < a + b for any

a,b>0 with a = HXk —X’“_IH and b =&, Ay k41, we have
2[5+ — x| < [|x* — x5 4 & A (59)

Now we show that for any k > kq the following inequality holds:

k
I+1 l ko+1 k
2 E : [ = x| < xR0t = x|+ & Dy g
l:k‘o—‘rl

By summing (59) over | =kq+1,...,k, we have
k

k k
2 20 X exls X K X e D v

l=ko+1 l=ko+1 l=ko+1
k k
+1 l ko+1 k
< D e xRl Y A (60)
l=ko+1 l=ko+1

and using fact that A, , +A,, =A,, for all p,q,r € N, we get

k
Z Dt = Dokt = @ (EZB(WV’]%H) —Ls(W")) —¢ (ﬁéﬂ(wy’kOH) - £Z5(WD))

l=ko+1
<@ (L4 (woroth) — L2 (W) < oo, (61)

where the last inequality is from the fact that ¢ > 0. Plugging (61) into (60), we obtain

k
Z Hxl+1 o XlH S ka0+1 o Xko H +§u§0 (EZB(WV,koJrl) o Zﬁ(wl’)) < 0. (62)
l=ko+1

Since the right-hand side of (62) does not depends k, the sequence {xk} has finite length, i.e.,

o0
Z ka+1 — ka < 00.
k=1

This implies {xk} is a Cauchy sequence and thus a convergent sequence. By Lemma 3, the multiplier
sequences {\"*} and {u”*} are also Cauchy. Therefore, we conclude that the whole sequence
{(x*, 2% A7k k) converges to a saddle point (x,2°, X, ") of Lrg,v=1,...,N. O

Note that verifying the KL property of a function might be difficult. However, it is known that
semi-algebraic and real-analytic functions, which capture many applications, are classes of functions
that satisfy the KL property; see e.g., Attouch and Bolte (2009), Attouch et al. (2013), Xu and Yin
(2013), Li and Pong (2018) for an in-depth study of the KL functions and illustrating examples.
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5. Computational Results
We present computational results to demonstrate the effectiveness of Algorithm 1. We conducted
experiments on test problems taken from a library of GNEPs, as used in Facchinei and Kanzow
(2010b), Dreves et al. (2011), Kanzow and Steck (2016). The experiments were carried out using
MATLAB (R2018a) on a laptop with an Intel Core i5-6300U CPU 2.50GHz 8GB RAM. Two
classes of instances were considered in the experiments: general GNEPs (A.1-A.10) and jointly-
conver GNEPs (A.11-A.18). We refer the readers to Facchinei and Kanzow (2009) for a detailed
description of the problems with data. Before present the results, it is noteworthy to mention how
our test settings for the Arrow-Debreu equilibrium problems (A.10 (a)-(e)) differ from those in
Facchinei and Kanzow (2009). Specifically, our setup includes production variables in consumers’
constraints (p?x! < pT¢l + ijl ¢:;p*y’), while the constraints in Facchinei and Kanzow (2009)
were set to pT ! < pT&t. This reflects the original Arrow-Debreu model better.

In the numerical experiments, we used the starting points listed in Facchinei and Kanzow (2010b),
and the other variables’ initial points were set to (z*°, \*Y *%) =(0,0,0) for every v=1,..., N.
As for the parameters, we used fixed parameters set to «, = 10 and 5, =1 for each player’s P-

Lagrangian across all test problems. In addition, a large parameter 7, was used so that ~, >

3Ly
Bu
stopping criterion is set as

L,+ and a diminishing step size o, was simply used for every player v in each problem. The

max {[|l2" 5 =2 ]AE A} <107

v=1,..

The computational results of our algorithm for the test problems are summarized in Table 1. The
notations used in the table are as follows: the number of players ‘IN’, the number of variables ‘n’,
the number of constraints ‘m’; the starting point ‘x°’ (a specific reported number indicates that
all primal variables are uniformly initialized to that value), the total (cumulative) number of inner
iterations ‘Iter.’, and the computation time in CPU seconds ‘Time (s)’.

We make some remarks on the computational results. Algorithm 1 successfully solved all test
problems. On the other hand, the exact penalty algorithm (Facchinei and Kanzow 2010b) failed to
find solutions for problems A.2, A.7, and A.8, and the interior-point algorithm (Dreves et al. 2011)
and the augmented Lagrangian method (Kanzow and Steck 2016) were unable to find a GNE for
the instance A.8. This is attributed to their sensitivity to initial points and choices of parameters,
while Algorithm 1 is insensitive to initialization and does not require (penalty) parameter updates.
Additionally, algorithm 1 converges to a GNE in fewer iterations, due to its favorable structure: it
employs a first-order scheme on strongly (smooth) convex approximations for the x-update, along

with exact maximization steps with fixed step sizes for the multiplier updates.
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Furthermore, our algorithm consistently demonstrates fast convergence to a GNE in each prob-
lem. The convergence speed is primarily determined by how efficiently the subproblems are solved.
Our algorithm employs a first-order scheme combined with Jacobi-type decomposition on a strongly
convex approximation, and it includes a cost-effective projection onto the simple set X, for the
x-update. These features enable the algorithm to circumvent the computational burden of solving
a nonlinear system of equations during each (outer) iteration. Consequently, our algorithm achieves

convergence to a GNE within a very short CPU time for each instance.

Illustrative Examples
To see how Algorithm 1 performs on GNEPs well, we provide numerical results for three important

and practical instances with graphical illustrations.

Problem A.9 (a) (Power allocation in telecommunications). This model is described in
detail in Pang et al. (2008) and represents a realistic communication system subject to Quality-of-
Service (QoS) constraints. There are N links transmitting to K different Base Stations by using K
different channels. Link v transmits with power z¥ = (z%,...,z%), and denote by x = (z*,...,z")

the power allocation of all links. The GNEP model is defined by

K K
hyvxy
minimize E x; subject to E log, | 1+ I— >L", x>0,
P v Vi
* i—1 i—1 (o7)"+ > hi"x;
AV

where h/" is the power gain between transmitter y and receiver v on the ith channel, (0%)” is the
noise of link v on the ith channel, and L” is the minimum transmission target rate for link v.
This instance sets g = 0.3162 for all v and i, K =8, L” = 8 for all players, and the starting point
was set to (0,...,0). The data of coefficient h is given in Facchinei and Kanzow (2009). As shown in
Figure 1, the P-Lagrangian values {£};}, v =1,...,7, are monotonically decreasing and convergent,
as expected. Additionally, Figure 2 illustrates that the iterates of ¥, v =1,3,5, converge to a point
satisfying the minimum target rate of 8. Note that since the coupling constraints are relaxed into

the objective with the multipliers, the projection onto X, = {z” € R™ : 2 > 0} performs efficiently,

which leads to convergence to a GNE within a short CPU time of 0.32 seconds.

Problem A.10 (a) (Arrow-Debreu general equilibrium model). This model is introduced
by Arrow and Debreu (1954) and described in Facchinei and Kanzow (2010a) in detail. In this
instance, there are 8 players (I =5, J =2, and one market player) and 3 goods (K = 3). The
market player sets (normalized) prices p € Rf for the market clearing problem. The jth firm

maximizes its profit by determining production quantity ¢/ € Y;, where Y; C R¥ is a production
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Table1  Computational results for Algorithm 1.
general GNEP N n m x" Iter. | Time (s)
Al 10 10 20 0.01 38 <0.01
0.1 36 <0.01
1 38 <0.01
A2 10 10 24 0.01 610 0.04
0.1 536 0.04
1 683 0.05
A3 3 7 18 0 51 0.01
1 51 0.01
A4 3 7 18 0 7 <0.01
1 7 <0.01
10 7 <0.01
A5 3 7 18 0 82 0.02
1 82 0.02
10 82 0.02
A6 3 7 21 0 49 0.02
1 49 0.02
10 49 0.02
AT 4 20 44 0 48 0.02
1 48 0.02
10 48 0.02
A8 3 3 8 0 45 <0.01
1 45 <0.01
10 45 <0.01
A9 (a) 7 56 63 0 108 0.32
A9 (b) 7 112 119 0 135 1.24
A10 (a) 8 24 33 0 780 0.10
A.10 (b) 25 125 151 1 1374 0.67
A.10 (c) 37 222 260 0 2154 1.12
A.10 (d) 37 370 408 1 3251 1.35
A.10 (e) 48 576 625 1 4728 2.54
jointly-convexr GNEP | N n m x? Iter. Time (s)
A1l 2 2 2 0 12 <0.01
A12 2 2 4 (2,0) 10 <0.01
A.13 3 3 9 0 15 <0.01
A14 10 10 20 0.01 38 <0.01
A.15 3 6 12 0 145 <0.01
A.16 (P=T75) 5 5 10 10 52 0.02
A.16 (P=100) 5 5 10 10 52 0.02
A.16 (P=150) 5 5 10 10 52 0.02
A.16 (P=200) 5 5 10 10 52 0.02
A7 2 3 7 0 9 <0.01
A18 2 12 28 0 114 0.02
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Lagrangian function values

Iteration k

Figure 1 Convergence behaviors of P-Lagrangian Ll s, v=1,...,7.
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Figure 2 Trajectories of the iterates of variables z;,z;, and z7, i=1,...,8, with sum-rates.

set. The ith consumer decides on goods quantity z* € X, to maximize its utility, where X; C R¥ is

a consumption set. The GNEP is defined as the set of problems of three types of players:

I J I
max p’y’ max u;(z') max p’ E ' — E y — E &
b i=1 j=1 i=1

yJ JJiEXi
J K

sty €Y, st pla <p” [ €+ aiy |, st Y pr=1, pp >0,
j=1 k=1

where ¢;; > 0 is the fraction of the profit of the jth production owned by consumer i such that

Zle ¢;; =1, and ¢ € R¥ is an initial endowment of goods. The utility functions u; are quadratic
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and concave, u;(z') = —3(2")TQ'z’ + (b')Ta’, and jth firm’s production set is defined by Y; =
{v
ing point is set to 2 =0, y7* =0, and p° =(1/3,1/3,1/3). The convergence behaviors are shown

in Figures 3 and 4. We see that the results also verify our theoretical findings. Figure 3 shows that

Yy >0, Zf:1(y£)2 <10-j } The detailed data is given in Facchinei and Kanzow (2009). Start-

all P-Lagrangian values are decreasing and convergent to finite values. Figure 4 illustrates that the
iterates generated by Algorithm 1 converge to the equilibrium price p = (0.1441,0.5270,0.3289), as

well as to the equilibrium production and consumption.
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Convergence of the sequence of decision variables for each player.
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6. Conclusions

In this paper, we proposed a novel algorithmic framework for computing an equilibrium of general-
ized continuous Nash games (GNEPs) with theoretical guarantees based on the Proximal-Perturbed
Lagrangian function. We have shown that the proposed method has significant advantages over
existing approaches from both theoretical and computational perspectives; it does not require
boundedness assumptions and is the first development of an algorithm to solve a general class of
GNEPs in a distributed manner. The numerical results supported our theoretical findings. Pos-
sible future research is to extend our methodology to compute equilibria in nonconvex games or
stochastic games with coupling constraints that arise in economics and operations research, which

will result in a broader application domain.
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