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This paper presents a new primal-dual method for computing an equilibrium of a generalized Nash equi-

librium problem (GNEP), where each player’s feasible strategy set depends on the other players’ strategies.

The method is based on a new form of Lagrangian with a quadratic approximation. First, we reformulate a

GNEP as a saddle point computation problem using the new Lagrangian and establish equivalence between

a saddle point of the Lagrangian and an equilibrium of the GNEP. We propose a simple first-order algorithm

that is convergent to the saddle point. Furthermore, we establish global convergence under the assumption

of Kurdyka- Lojasiewicz property. Our method has two novel features over existing approaches: (i) it requires

neither boundedness assumptions on the strategy set and the set of multipliers of each player, nor bounded-

ness assumptions on the iterates generated by the algorithm; (ii) to the best of our knowledge, it is the first

development of a first-order distributed method to solve a general class of GNEPs. Numerical experiments

are performed on test problems, and the results demonstrate the effectiveness of the proposed method.

1. Introduction

We consider generalized Nash equilibrium problems (GNEPs) that describe a broad class of non-

cooperative games, in which each player seeks to optimize her/his own objective function while

subject to certain constraints that are affected by the other players’ strategies. The standard Nash

game (Nash 1950) is a subclass of GNEPs, as the strategic interactions among players in a Nash

game are only reflected in their objective functions, not in the constraints. Specifically, the game

features a set of N players denoted by N = {1, . . . ,N} where each player ν has its own strategy

xν ∈Rnν . Each player ν has an objective function θν(xν , x−ν) and a finite set of coupling constraints

gνi (xν , x−ν) ≤ 0 (i = 1, . . . ,mν), both of which depend on player ν’s own strategy xν as well as

other players’ strategies x−ν := (xν′)ν′ ̸=ν . Denote all players’ strategies by a vector x = (xν , x−ν) :=

(x1, . . . , xν , . . . , xN) with dimension n=
∑N

ν=1 nν . The GNEP can be formally defined as a problem

of finding a solution for each of the following problems. Given other players’ strategies x−ν , each

player ν seeks to find a strategy xν that solves the optimization problem:

minimize
xν∈Xν

θν(xν , x−ν)

subject to gνi (xν , x−ν)≤ 0, i= 1, . . . ,mν ,
(1)
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where Xν ⊆Rnν represents the private strategy set of player ν that is nonempty, closed, and convex.

The feasible strategy set of each player ν can be represented by the parametric inequalities:

Fν(x−ν) :=
{
xν ∈Xν : gνi (xν , x−ν)≤ 0, i= 1, . . . ,mν

}
⊆Rnν .

Note that for simplicity, private functional constraints cνj (xν)≤ 0 for j = 1, . . . , pν are not explic-

itly highlighted in the paper. They can be easily handled in the same way to deal with gνi (xν , x−ν)≤

0. Here, nν , mν , and pν are positive integers. The set Xν is defined as Xν := {xν ∈Rnν | lν ≤ xν ≤ uν},

where lν or uν may be unbounded; that is, lν =−∞ or uν = +∞ or both.

A Nash equilibrium of the GNEP can be defined as follows.

Definition 1. A collection of strategies x∗ = (x1,∗, . . . , xN,∗) is a (pure-strategy) generalized

Nash equilibrium (GNE) if for every ν = 1, . . . ,N ,

θν
(
xν,∗, x−ν,∗)≤ θν

(
xν , x−ν,∗) , ∀xν ∈Fν(x−ν,∗),

i.e., x∗ = (x1,∗, . . . , xN,∗) is a GNE, if and only if no player has an incentive to unilaterally deviate

from xν,∗ when other players choose x−ν,∗.

We make the following assumption on the functions throughout the paper.

Assumption 1. For every ν ∈ N and fixed x−ν, objective function θν(xν , x−ν) and constraint

functions gνi (xν , x−ν), i= 1, . . . ,mν, are continuously differentiable and convex with respect to xν.

Note that θν(xν , x−ν) and gνi (xν , x−ν) are possibly nonconvex in other players’ strategies xν′ ∈

x−ν , and gνi (xν , x−ν) are not necessarily shared by all players (non-shared coupling constraints).

Under Assumption 1, problem (1) is known as a very general form of GNEP (Dreves et al. 2011)

(We call it general GNEP).

In this paper, we aim to provide and analyze a first-order decomposition algorithm, based on a

novel form of Lagrangian, to compute an equilibrium of the general GNEP, provided that equilibria

of generalized Nash game exist.

We also make two standard assumptions; Lipschitz gradient continuity of the objective and

constraint functions (smoothness) and coercivity of the objective functions.

Assumption 2. For ν = 1, . . . ,N , the gradients of θν and gν are L∇θν -Lipschitz continuous and

L∇gν -Lipschitz continuous, respectively. That is,

∥∇xθν (x1)−∇xθν (x2)∥ ≤L∇θν ∥x1−x2∥ , ∀x1,x2 ∈X, (2a)

∥∇xg
ν (x1)−∇xg

ν (x2)∥ ≤L∇gν ∥x1−x2∥ , ∀x1,x2 ∈X, (2b)

where ∇xθν(x) and ∇xg
ν(x) represent (∇x1θν(x), . . . ,∇xN θν(x)) and (∇x1g

ν(x), . . . ,∇xN g
ν(x)),

respectively, and X :=
∏

ν=1Xν.
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Assumption 3. For every ν = 1, . . . ,N , the objective function θν(xν , x−ν) is coercive with respect

to x = (xν , x−ν)∈Xν ×X−ν, i.e., lim∥x∥→∞ θν(x) =∞.

Note that we do not impose the coercivity assumption on the feasible strategy sets, contrary to

the interior-point algorithm (Dreves et al. 2011) for general GNEPs. The algorithm in Dreves et al.

(2011) relies on the strong assumption that the feasible strategy sets of all players are bounded,

i.e., lim∥x∥→∞
∥∥gν+(x)

∥∥= +∞ where gν+(x) := max{0, gν(x)} for all ν = 1, . . . ,N .

1.1. Literature Review

The GNEP was originally introduced in seminal works by Debreu (1952) and Arrow and Debreu

(1954) in the early 1950s, where the GNEP was referred to as a social equilibrium problem or

an abstract economy. One important subclass of GNEPs, known as jointly-convex GNEPs (also

called shared-constrained GNEPs), was first investigated by Rosen (1965).This class of GNEPs

is characterized by shared constraints across all players, i.e., the convex coupling constraints are

identical for all players (g1 = · · · = gN = g). While early studies on GNEPs were primarily con-

cerned with economics, recent decades have witnessed a growing interest in GNEPs as a modeling

framework and solution concept in various application areas. Some examples include electricity

market models (Jing-Yuan and Smeers 1999, Contreras et al. 2004, Hobbs and Pang 2007), power

allocation in telecommunications (Pang et al. 2008, Scutari et al. 2014), environmental pollu-

tion control (Krawczyk and Uryasev 2000, Breton et al. 2006), transportation systems (Stein and

Sudermann-Merx 2018), and cloud computing (Cardellini et al. 2016), to name a few.

Numerous algorithms have been developed for computing a GNE of a GNEP in the literature.

One popular approach involves transforming a GNEP into a variational inequality (VI) problem and

applying algorithms designed to find a solution of a VI reformulation, i.e., variational equilibrium

(VE) or also called normalized Nash equilibrium (Facchinei and Kanzow 2010a); see e.g., Harker

(1991), Pang and Fukushima (2005), Facchinei et al. (2007), Nabetani et al. (2011), Yin et al.

(2011), Kulkarni and Shanbhag (2012), Migot and Cojocaru (2020). The VI approach simplifies

solving the GNEP to finding a solution for a VI, instead of solving a more complicated quasi-

variational inequality (QVI) as required for a GNEP (Facchinei and Kanzow 2010a). Importantly,

the set of VEs is known to be a subset of GNEs (Ba and Pang 2022). However, a notable limitation

of the VI-based approach is that it is only applicable to jointly-convex GNEPs.

Another widely used method for computing GNE involves reformulating a GNEP into a global

optimization problem via the Nikaido-Isoda (NI) function (Nikaidô and Isoda 1955). The result-

ing optimization problem is then solved using the so-called relaxation algorithms (Uryas’ev and

Rubinstein 1994, Krawczyk and Uryasev 2000, Contreras et al. 2004, Von Heusinger and Kanzow

2009a,b). However, these methods are also restricted to jointly-convex GNEPs and are known to
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be computationally expensive. Other algorithms designed for this class of GNEPs include Newton-

type methods (Facchinei et al. 2009, von Heusinger et al. 2012, Izmailov and Solodov 2014) and

Lemeke’s method (Schiro et al. 2013) for specifically affine GNEPs.

Another line of relevant work is concerned with distributed algorithms for solving the GNEPs.

In the context of primal-dual schemes for computing GNE, there has been a surge of interest in

developing distributed primal-dual schemes for computing GNE for shared-constrained GNEPs

(Zhu and Frazzoli 2016, Grammatico 2017, Paccagnan et al. 2018, Yi and Pavel 2018, 2019, Deng

2021, Cenedese et al. 2021, Migot and Cojocaru 2021, Belgioioso et al. 2022). These methods,

however, are applicable only to jointly-convex GNEPs (GNEPs with shared constraints or affine

coupling constraints). Distributed algorithms to date have been relying on monotonicity properties,

which do not generally hold in general GNEPs we’re focusing on in this paper.

The equilibrium computation of GNEPs beyond the class of jointly-convex GNEPs remains a

very challenging task. This is mainly due to interdependence between each player’s strategy and

some other players’ strategies through both objective and coupling constraints, along with the

potential nonconvexity of each player’s problem in the other players’ strategies. A few algorithms

have indeed been proposed, including penalty-type methods (Pang and Fukushima 2005, Facchinei

and Kanzow 2010b, Kanzow and Steck 2018, Ba and Pang 2022), interior point algorithm (Dreves

et al. 2011), and augmented Lagrangian method (Kanzow and Steck 2016, 2018).

In all such methods, it is assumed that the Extended Mangasarian-Fromovitz Constraint Qualifi-

cation (EMFCQ), an extension of the MFCQ for infeasible points, holds for every player1. However,

this EMFCQ is a restrictive assumption because it is equivalent to the set of the multipliers of each

player being bounded (Nocedal and Wright 2006). This assumption is often violated in the context

of GNEPs, as illustrated by simple examples in Dorsch et al. (2013). This violation occurs due to the

interdependency between xν and x−ν through coupling constraints gνi (xν , x−ν)≤ 0, i = 1, . . . ,mν ,

where the gradients of constraints can be (positively) linear dependent. In such cases, algorithms

can generate unbounded function values, which can lead to failures of convergence to GNEs or

even feasible points.

Penalty-based algorithms reduce the GNEP to a standard Nash equilibrium problem (NEP) by

penalizing coupling constraints and focus on updating the penalty parameter. In particular, the

exact penalty method in Facchinei and Kanzow (2010b) results in nonsmooth subproblems, so

it obtains a GNE under various differentiability assumptions on the objectives and constraints.

This lack of differentiability is a serious problem for designing efficient algorithms. To address the

1 For all ν = 1, . . . ,N and for x = (xν , x−ν), there exists a vector dν ∈ Rnν such that ∇xg
ν
i (x)

T dν < 0 ∀i ∈ Iν≥(x),
where Iν≥(x) = {i ∈ {1, . . . ,mν} : gνi (x)≥ 0} denotes the set of active or violated constraints for player ν (Facchinei
and Kanzow 2010b, Kanzow and Steck 2016).
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drawbacks of penalty-based methods, Kanzow and Steck (2016) proposed an augmented Lagrangian

method. This approach requires an assumption that there exists a limit point of the sequence {xk}.

However, this assumption is not clear without compactness of each player’s private set.

It is noteworthy that even with coercivity assumption on the objective function, the augmented

Lagrangian (AL) method (Kanzow and Steck 2016) does not guarantee boundedness of primal/dual

sequences. To ensure the boundedness of the sequences, bounded level sets of AL functions are

needed, but they are typically unbounded. This is mainly related to the behavior of the multiplier

sequence {λν,k}. Specifically, the AL method (Kanzow and Steck 2016) is of min-max dynamics (due

to the increase in the dual variables), and by nature, the AL function alternatively increases and

decreases, and the dual sequence {λν,k} might be unbounded. Hence, the coercivity of the objective

function does not imply the boundedness of primal and dual sequences in the AL framework.

1.2. Our Contributions

This paper presents a novel algorithmic framework for computing an equilibrium of a general GNEP

without imposing boundedness assumptions on primal-dual sequences and (feasible) strategy sets.

• We introduce a new Lagrangian combined with artificial variables to reduce the GNEP to a

standard Nash game, where the artificial variables are used to get rid of the coupling con-

straints while regularization terms lead to strong concavity of the Lagrangian in the multipli-

ers. This allows for the design of an algorithm that generates a bounded primal-dual sequence

without imposing EMFCQ assumption and removes computational effort in updating the

penalty parameter, as in Facchinei and Kanzow (2010b) and Kanzow and Steck (2016).

• The proposed algorithm can effectively handle the potential nonconvexity of each player’s

functions with respect to other players’ strategies by utilizing a simple quadratic approxima-

tion of P-Lagrangian. This quadratic approximation also provides a first-order decomposition

scheme, enabling distributed updates of primal variables. As a result, this algorithm represents

the first distributed approach to solving general GNEPs.

• We prove that our algorithm is convergent to a saddle point of P-Lagrangian under stan-

dard assumptions. Unlike existing methods for general GNEPs, our analysis does not require

boundedness assumption on the iterates generated by the algorithm. We also do not use safe-

guarding technique (Andreani et al. 2007, 2008) to bound multiplier iterates as in Kanzow

and Steck (2016). We establish the global convergence under an additional assumption that

the objective and constraint functions satisfy the Kurdyka- Lojasiewicz property.

Outline of the paper. This paper is organized as follows. In section 2, we introduce the P-

Lagrangian function, describe its characteristics, and reformulate the GNEP as a saddle point
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computation problem using the P-Lagrangian. Section 3 presents a distributed first-order primal-

dual algorithm based on a quadratic approximation. In Section 4, we establish the convergence

properties of the proposed algorithm. Numerical results are presented in Section 5.

Notation. We use Rnν and Rmν to denote the nν-dimensional Euclidean vector space and mν-

dimensional Euclidean vector space, respectively. For two vectors x, y ∈Rnν , the inner product is

denoted by xTy, and the standard Euclidean norm is denoted by ∥x∥ =
√
xTx. For a real scalar

z ∈R, we define [z]
+

= max{z,0}. We use Rmν
+ to denote the nonnegative orthant of Rmν , and the

notation x≥ 0 denotes that the vector x belongs to the nonnegative orthant.

2. Proximal-Perturbed Lagrangian Formulation

Before introducing Proximal-Perturbed Lagrangian (P-Lagrangian), we recall that under Assump-

tion 1 and suitable constraint qualifications, a GNE x∗ = (x1,∗, . . . , xN,∗) can be characterized by the

Karush-Kuhn-Tucker (KKT) conditions (Facchinei and Kanzow 2010a, Kanzow and Steck 2016):

The KKT conditions. Assume that a suitable constraint qualification holds. If there exists a point

x∗ = (x1,∗, . . . , xN,∗) together with some Lagrange multipliers ην,∗ satisfying the KKT conditions:{
0∈∇xνL

ν
0(xν,∗, x−ν,∗, ην,∗) +NXν (xν,∗), xν,∗ ∈Xν ,

ην,∗
i ≥ 0, gνi (xν,∗, x−ν,∗)≤ 0, ην,∗

i gνi (xν,∗, x−ν,∗) = 0, ∀i= 1, . . . ,mν ,
(3)

for every ν = 1, . . . ,N , then x∗ = (x1,∗, . . . , xN,∗) is a generalized Nash equilibrium (GNE). Here,

Lν
0(xν , x−ν , ην) := θν(xν , x−ν)+

∑mν

i=1(η
ν
i )gνi (xν , x−ν) is each player ν’s Lagrangian, and NXν (xν,∗) :=

{dν ∈Xν : dT
ν (xν −xν,∗)≤ 0,∀xν ∈Xν} is the normal cone to Xν at x∗.

Assuming a suitable constraint qualification (CQ) holds and under the convexity assumption of

the functions θν(·, x−ν) and gνi (·, x−ν) (see Assumption 1), the KKT conditions in (3) become nec-

essary and sufficient optimality conditions for problem (1) (Facchinei and Kanzow 2010a, Theorem

4.6). In addition, problem (1) is equivalent to solving the dual formulation, i.e.,

θν (x∗) = max
ην≥0

(
Dν

0 (ην) := min
xν∈Xν

Lν
0

(
xν , x−ν,∗, ην

))
. (4)

In the general GNEP model, the multiplier set of each player can be unbounded, even when

satisfying the KKT conditions in (3). As previously mentioned, this unboundedness results from the

inherent characteristics of general GNEPs, where the gradients of the constraints at the point x∗ can

be (positively) linear dependent, leading to an unbounded multiplier set. This aspect complicates

the computation of a GNE, thus making the boundedness of multipliers a key issue when solving

GNEPs. Our motivation for introducing a new Lagrangian is to address this challenge.

This section introduces a new form of Lagrangian that has a desirable structure for equilibrium

computation. We then show that computing a saddle point of the P-Lagrangian is equivalent to

finding an equilibrium of the GNEP (1).
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2.1. The Proximal-Perturbed Lagrangian

Motivated by the reformulation techniques in Bertsekas and Tsitsiklis (1989, Chapter 3.4) and

Bertsekas (2014, Chapter 3.2), we start by transforming problem (1) into an equivalent extended

formulation by introducing perturbation variables zν = (zν1 , . . . , z
ν
mν

) = 0 as additional constraints

and letting gν(xν , x−ν)≤ zν given x−ν :

minimize
xν∈Xν , zν∈Rmν

θν(xν , x−ν)

subject to gν(xν , x−ν)≤ zν , zν = 0.
(5)

Obviously, for zν = 0, the extended formulation is equal to problem (1). Noting that the reformu-

lation (5) allows the use of αν
2
∥zν∥2 as a penalty term, let us first consider the following partially

augmented Lagrangian for every ν = 1, . . . ,N :

Lν
α(xν , x−ν , zν , λν , µν) = θν(xν , x−ν) + (λν)

T
(gν
(
xν , x−ν

)
− zν) + (µν)T zν +

αν

2
∥zν∥2 ,

where λν = (λν
i , . . . , λ

ν
mν

) ∈Rmν
+ and µν = (µν

i , . . . , µ
ν
mν

) ∈Rmν are the Lagrange multipliers associ-

ated with constraints gν(xν , x−ν)− zν ≤ 0 and zν = 0, respectively. αν > 0 is a penalty parameter.

Observe that given (λν , µν), minimizing Lν
α with respect to zν gives

zν(λν , µν) =
1

αν

(λν −µν),

which implies that λν = µν at the unique (known) solution zν,∗ = 0. Based on this relation of λν

and µν from the optimality condition for zν , we add a proximal term −βν
2
∥λν −µν∥2 to define a

Proximal-Perturbed Lagrangian (P-Lagrangian) as

Lν
αβ(xν , x−ν , zν , λν , µν) := θν(xν , x−ν) + (λν)

T
(gν
(
xν , x−ν

)
− zν) + (µν)T zν

+
αν

2
∥zν∥2− βν

2
∥λν −µν∥2 ,

(6)

where βν > 0 is a proximal regularization parameter.

We observe that the structure of the P-Lagrangian Lν
αβ in (6) differs from the standard augmented

Lagrangian and its variants (see Hestenes 1969, Powell 1969, Rockafellar 1974, Bertsekas 2014,

Birgin and Mart́ınez 2014). It is characterized by the absence of penalty term for handling the

coupling constraint gν(xν , x−ν) − zν ≤ 0. Only additional constraint zν = 0 is penalized with a

quadratic penalty term αν
2
∥zν∥2, while gν(xν , x−ν)− zν ≤ 0 is merely relaxed into the objective

with the corresponding multiplier. Second, the P-Lagrangian is strongly concave in λν (for fixed

µν) and in µν (for fixed λν) due to the presence of the negative quadratic term −βν
2
∥λν −µν∥2. f
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2.2. Equivalence between a Saddle Point of P-Lagrangian and a GNE

Now consider the following P-Lagrangian dual problem for given x−ν :

max
λν∈Rmν

+ ,µν∈Rmν

{
Dν

αβ(λν , µν) := min
xν∈Xν ,zν∈Rmν

Lν
αβ(xν , x−ν , zν , λν , µν)

}
. (7)

Since Lν
αβ(•, x−ν , zν , λν , µν) is convex, the primal-dual solutions of problem (7), (xν,∗, x−ν,∗, zν,∗)

and (λν,∗, µν,∗) given x−ν = x−ν,∗, can be characterized by the saddle point of the P-Lagrangian.

Definition 2. Given x−ν,∗, a point (xν,∗, x−ν,∗, zν,∗, λν,∗, µν,∗) is said to be a (parametrized)

saddle point of the Proximal-Perturbed Lagrangian for αν > 0 and βν > 0 if for every ν = 1, . . . ,N,

Lν
αβ(xν,∗, x−ν,∗, zν,∗, λν , µν)≤Lν

αβ(xν,∗, x−ν,∗, zν,∗, λν,∗, µν,∗)≤Lν
αβ(xν , x−ν,∗, zν , λν,∗, µν,∗) (8)

for all (xν , zν , λν , µν)∈Xν(x−ν,∗)×Rmν ×Rmν
+ ×Rmν . Here, x−ν,∗ are viewed as parameters.

We establish the equivalence between computing a saddle point of Lν
αβ and finding an equilibrium

of the GNEP (1) by proving Theorems 1 and 2. Before studying the equivalence, let us observe the

following properties of Lν
αβ (xν , x−ν , zν , λν , µν).

Observation 1. Notice that the inner minimization in (7) can be split into two parts as follows:

max
λν∈Rmν

+ ,µν∈Rmν

{
min
xν∈Xν

[
θν
(
xν , x−ν

)
+ (λν)

T
gν
(
xν , x−ν

)]
+ min

zν∈Rmν

[
− (λν −µν)

T
zν +

αν

2
∥zν∥2

]
− βν

2
∥λν −µν∥2

}
.

Denote by zν (λν , µν) as a unique solution of the problem, min
zν∈Rmν

[
− (λν −µν)

T
zν + αν

2
∥zν∥2

]
for

given (λν , µν). If we minimize
[
− (λν −µν)

T
zν + αν

2
∥zν∥2

]
with respect to zν , we have

zν (λν , µν) =
1

αν

(λν −µν) ⇐= (µν −λν) +ανz
ν = 0.

Recall that based on the optimality condition for zν , we added a quadratic regularization term

−βν
2
∥λν −µν∥2 to make the Lagrangian strongly concave in λν (for fixed µν) and in µν (for fixed

λν) as it vanishes at zν,∗ = 0. Substituting zν (λν , µν) into Lν
αβ (xν , x−ν , zν , λν , µν), Lν

αβ reduces to

Lν
αβ

(
xν , x−ν , zν (λν , µν) , λν , µν

)
= θν

(
xν , x−ν

)
+ (λν)

T
gν
(
xν , x−ν

)
− 1 +ανβν

2αν

∥λν −µν∥2 . (9)

Then the P-Lagrangian dual problem can be expressed as

max
λν∈Rmν

+ ,µν∈Rmν

{
Dν

αβ (λν , µν)≜Dν
0 (λν)− 1 +ανβν

2αν

∥λν −µν∥2
}
, (10)

where Dν
0 (λν) = min

xν∈Xν

{
θν (xν , x−ν) + (λν)

T
gν (xν , x−ν)

}
, which is identical to the standard dual

function associated with the original problem (1). Thus the P-Lagrangian dual function Dν
αβ (λν , µν)

is maximized jointly in λν and µν if and only if λν maximizes Dν
0 (λν) and λν = µν . This implies

that the multiplier λν,∗ for the constraint gν (xν , x−ν)− zν ≤ 0 in extended problem (5) is precisely

to the multiplier ην,∗ for the constraint gν (xν , x−ν)≤ 0 in problem (1).
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Observation 2. If we maximize Lν
αβ(xν , x−ν , zν , λν , µν) with respect to µν , we get

∇µνLν
αβ

(
xν , x−ν , zν , λν , µν

)
= zν +βν (λν −µν) = 0,

which, along with the fact λν,∗ = µν,∗, implies that zν = 0 for maximizers (λν,∗, µν,∗) and βν > 0.

Using Observations 1 and 2, we now show the equivalence between a saddle point of Lν
αβ and an

equilibrium of the GNEP (1).

Theorem 1. Let (xν,∗, x−ν,∗, zν,∗, λν,∗, µν,∗) be a saddle point of Lν
αβ (xν , x−ν , zν , λν , µν) for a

given x−ν = x−ν,∗ and for some αν > 0 and βν > 0. Then, x∗ = (xν,∗, x−ν,∗) is an equilibrium of the

GNEP (1) for every ν = 1, . . . ,N .

Proof. Using the reduced P-Lagrangian (9), we have

Lν
αβ (x∗, zν,∗ (λν , µν) , λν , µν) = θν (x∗) + (λν)

T
gν (x∗)− 1 +ανβν

2αν

∥λν −µν∥2

≤Lν
αβ (x∗, zν,∗ (λν,∗, µν,∗) , λν,∗, µν,∗) .

(11)

First, we prove that x∗ = (xν,∗, x−ν,∗) is feasible for problem (1). Suppose by contradiction that x∗

is infeasible, i.e., gνi (x∗)> 0 for some i. Then there exist some λν
i such that λν

i g
ν
i (x∗)→∞ as λν

i →
∞. This implies that Lν

αβ (x∗, zν,∗, λν , µν)→∞ by taking the limit as λν
i →∞ with λν

i = µν
i to maxi-

mize the left-hand side of the first inequality in (11), which is a contradiction with the first inequal-

ity in (8). Therefore, gνi (x∗) ≤ 0 for all i = 1, . . . ,mν . By the definition Lν
αβ (x∗, zν,∗, λν,∗, µν,∗) =

supλν≥0,µνLν
αβ (x∗, zν,∗, λν , µν) with the fact that gν(x∗)≤ 0 and λν,∗ ≥ 0, we have (λν,∗)T gν(x∗) = 0

and λν,∗ = µν,∗. It thus follows that

Lν
αβ (x∗, zν,∗, λν,∗, µν,∗) = θν (x∗) .

Next, let xν ∈Xν (x−ν,∗) be any feasible solution to problem (1). For any feasible xν and λν
i ≥ 0,

since gνi (xν , x−ν,∗)≤ 0, we have

(λν)
T
gν
(
xν , x−ν,∗)− 1 +ανβν

2αν

∥λν −µν∥2 ≤ (λν) · 0− 1 +ανβν

2αν

∥λν −µν∥2 ≤ 0. (12)

From Observation 2 that zν = 0 when λν,∗ = µν,∗ for any βν > 0, we have

− (λν,∗−µν,∗)
T
zν +

αν

2
∥zν∥2 = 0. (13)

The second inequality of the saddle point condition (8) yields

θν (x∗)≤Lν
αβ

(
xν , x−ν,∗, zν , λν,∗, µν,∗)

= θν
(
xν , x−ν,∗)+ (λν,∗)

T
gν
(
xν , x−ν,∗)− βν

2
∥λν,∗−µν,∗∥2︸ ︷︷ ︸

≤0

− (λν,∗−µν,∗)
T
zν +

αν

2
∥zν∥2︸ ︷︷ ︸

=0

≤ θν
(
xν , x−ν,∗) ,

where the last inequality is from (12) and (13). Hence, x∗ is a GNE of problem (1). □
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Theorem 2. Assume that x∗ = (x1,∗, . . . , xN,∗) is an equilibrium of the GNEP (1) at which

the KKT conditions (3) hold with some Lagrange multipliers ην,∗ for all players’ problems, given

x−ν = x−ν,∗. Then for ν = 1, . . . ,N , there exist Lagrange multipliers (λν,∗, µν,∗) such that

Lν
αβ (x∗, zν,∗, λν , µν)≤Lν

αβ (x∗, zν,∗, λν,∗, µν,∗)≤Lν
αβ

(
xν , x−ν,∗, zν , λν,∗, µν,∗) , (14)

for any (xν , zν , λν , µν)∈Xν(x−ν,∗)×Rmν ×Rmν
+ ×Rmν ,

Proof. From the feasibility of a GNE x∗, we have for any λν ∈Rmν
+ , µν ∈Rmν and αν , βν > 0

(λν)
T
gν (x∗)− 1 +ανβν

2αν

∥λν −µν∥2 ≤ 0, (15)

implying that θν(x∗) + (λν)T gν(x∗) − 1+ανβν
2αν

∥λν −µν∥2 = Lν
αβ(x∗, zν,∗(λν , µν), λν , µν) ≤ θν(x∗).

On the other hand, since there exists a pair the Lagrange multipliers (λν,∗, µν,∗) maximizing

Lν
αβ(x∗, zν,∗, λν , µν), we also have that for λν = µν = 0

Lν
αβ (x∗, zν,∗ (0,0) ,0,0)≤Lν

αβ (x∗, zν,∗, λν,∗, µν,∗) = θν (x∗) + (λν,∗)
T
gν (x∗)− 1 +ανβν

2αν

∥λν,∗−µν,∗∥2 ,

which together with the fact that Lν
αβ (x∗, zν,∗ (0,0) ,0,0) = θν (x∗) gives

(λν,∗)
T
gν (x∗)− 1 +ανβν

2αν

∥λν,∗−µν,∗∥2 ≥ 0. (16)

Combining (15) and (16), we obtain

(λν,∗)
T
gν (x∗)− 1 +ανβν

2αν

∥λν,∗−µν,∗∥2 = 0,

which implies that Lν
αβ (x∗, zν,∗, λν,∗, µν,∗) = θν (x∗) . Thus, the first inequality in (14) holds.

Using the facts that gν (x∗) ≤ 0, λν,∗ ≥ 0, and (16), we have that 0 ≥ (λν,∗)
T
gν (x∗) ≥

1+ανβν
2αν

∥λν,∗−µν,∗∥2 ≥ 0, which implies that the multiplier λν,∗ satisfies the complementarity slack-

ness (λν,∗)
T
gν(xν,∗, x−ν,∗) = 0 and λν,∗ = µν,∗. Therefore, the maximizer λν,∗ is equivalent to the

Lagrange multiplier ην,∗ satisfying the KKT conditions (3) for the original GNEP (1).

Next, noting that ∇zνL
ν
α (zν , λν,∗, µν,∗) =− (λν,∗−µν,∗) + ανz

ν,∗ = 0 and λν,∗ = µν,∗, we get the

minimum zν,∗ = 0 for αν > 0. By the convexity of θν (xν , x−ν,∗) and gν (xν , x−ν,∗) in xν , we have

θν
(
xν , x−ν,∗)≥ θν (x∗) +∇xνθν (x∗)

T
(xν −xν,∗) ,

gν
(
xν , x−ν,∗)≥ gν (x∗) +∇xνg

ν (x∗)
T

(xν −xν,∗) .

Then we have

Lν
αβ

(
xν , x−ν,∗, zν , λν,∗, µν,∗)≥ θν (x∗) + (λν,∗)

T
gν (x∗) +

(
∇xνθν (x∗) +

mν∑
i=1

λν,∗
i ∇xνg

ν
i (x∗)

)T

(xν −xν,∗)

− (λν,∗−µν,∗)
T
zν +

αν

2
∥zν∥2− βν

2
∥λν,∗−µν,∗∥2

≥ θν (x∗) + (λν,∗)
T
gν (x∗) +

αν

2
∥zν∥2

≥ θν (x∗) =Lν
αβ(x∗, zν,∗ = 0, λν,∗, µν,∗).

Hence, (x∗, zν,∗ = 0) satisfies the second inequality of (14). □
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3. Algorithm

In this section, we propose a simple first-order primal-dual algorithm for computing a saddle point

of Lν
αβ based on a quadratic approximation of Lν

αβ for every ν = 1, . . . ,N .

3.1. Motivation for approximation of subproblems

We begin by describing briefly why we need to consider an approximation scheme for updating

x = (xν , x−ν). To compute a saddle point of Lν
αβ(x, zν , λν , µν) for every ν = 1, . . . ,N , we should

be able to determine a point x̃ = (x̃ν , x̃−ν) that satisfies the following first-order optimality (or

simultaneous stationarity) condition of subproblems for fixed (zν , λν , µν) and all for ν = 1, . . . ,N :

∇xνLν
αβ(x̃, zν , λν , µν)T (xν − x̃ν)≥ 0, ∀xν ∈Xν .

It is well known (Facchinei and Pang 2007) that for given (zν,k, λν,k, µν,k), computing such a sta-

tionary point is equivalent to the variational inequality (VI) problem of finding x̃∈X such that

L
(
x̃, zk, λk, µk

)T
(x− x̃)≥ 0, ∀x∈X,

where X :=
∏N

ν=1Xν , the Cartesian product of the private strategy sets of all players, and the

mapping L (x, zk, λk, µk) : X→Rn is given by

L
(
x, zk, λk, µk

)
=

 ∇x1L1
αβ (x1, x−1, z1,k, λ1,k, µ1,k)

...
∇xNLN

αβ (xN , x−N , zN,k, λN,k, µN,k)

 ,
with z = [(z1)T , . . . , (zN)T ], λ= [(λ1)T , . . . , (λN)T ]

T
, and µ= [(µ1)T , . . . , (µN)T ]

T
.

However, it is challenging to compute the point x̃ using descent methods. In the GNEP setting,

each player’s choice of strategy affects the optimization problems of the others through coupling

constraints and objectives. More specifically, the monotonicity of the mapping L(x, zk, λk, µk) with

respect to x = (xν , x−ν) does not hold in general (Facchinei and Kanzow 2010a, Section 5.2) even if

each component∇xνLν
αβ(xν , x−ν , zν , λν , µν) is convex in xν . This nonconvexity of each P-Lagrangian

in the other players’ decision variables makes it hard to preserve a descent direction for the con-

vergence to the stationary point x̃ that satisfies all components of the variational inequality.

3.2. Construction of Quadratic Approximation Model

To overcome such a computational difficulty, we consider a monotone approximation, denoted by

L̂k, to the nonmonotone mapping L in x. The monotone approximation L̂k of the mapping L can

be always chosen even if L is nonmonotone (see e.g., Chung and Fuller 2010, Luna et al. 2014).

Furthermore, strongly monotone approximation mapping can be derived by replacing each player’s

Lν
αβ by a simple approximation function and then constructing an approximation L̂k.
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To this end, inspired by Beck and Teboulle (2009) and Bolte et al. (2014), we first employ the

following quadratic approximation L̂ν
αβ in only x at a given point y:

L̂ν
αβ(x, zν , λν , µν ;y) :=Lν

αβ(y, zν , λν , µν) +∇xνLν
αβ(y, zν , λν , µν)T (xν − yν) +

γν
2
∥xν − yν∥2

+
∑
ν′ ̸=ν

∇xν
′Lν

αβ(y, zν , λν , µν)T (xν′ − yν′) +
γν
2

∑
ν′ ̸=ν

∥∥∥xν′ − yν′
∥∥∥2 , (17)

which is a linearized P-Lagrangian Lν
αβ with respect to all other players’ strategies x = (xν , x−ν)

at the point y combined with quadratic proximal terms that measure the local error in the linear

approximation. Here, γν > 0 is a proximal parameter. The term
∑

ν′ ̸=ν∇xν
′Lν

αβ (y, zν , λν , µν) =

∇x−νLν
αβ (y, zν , λν , µν) represents the gradient at a given point y ∈Rn in other players’ strategies.

As a direct consequence of the above Lipschitz continuity of ∇xθν(x) and ∇xg
ν(x), (2a) and

(2b), respectively, we have the well-known descent Lemma.

Lemma 1 (Bertsekas 1999, Proposition A.24). Let Assumptions 1 and 2 hold. Then for

ν = 1, . . . ,N and for fixed (zν , λν , µν), ∇xLν
αβ is Lipschitz continuous with constant Lν > 0. Thus

Lν
αβ(x1)≤Lν

αβ(x2) +∇xLν
αβ(x2)

T (x1−x2) +
Lν

2
∥x1−x2∥2 , ∀x1,x2 ∈X.

Here, we omit fixed (zν , λν , µν) for simplicity.

With the parameter γν > 0 such that γν ≥ Lν , L̂ν
αβ(x, zν , λν , µν ;y) (17) is an upper quadratic

approximation of Lν
αβ(•, zν , λν , µν) around the point y with respect to x = (xν , x−ν) and it has the

following properties (see e.g., Beck and Teboulle 2009, Razaviyayn et al. 2013, Scutari et al. 2016).

Remark 1. The quadratic approximation function L̂ν
αβ with γν ≥Lν satisfies the properties:

(P1) L̂ν
αβ (y, zν , λν , µν ;y) =Lν

αβ (y, zν , λν , µν) for ∀y ∈X.

(P2) L̂ν
αβ (x, zν , λν , µν ;y)≥Lν

αβ (y, zν , λν , µν) for ∀x,y ∈X.

(P3) L̂ν
αβ(•, zν , λν , µν ;y) is strongly convex in x = (xν , x−ν) with constant cν > 0, i.e.,(
∇xL̂ν

αβ(x1, z
ν , λν , µν ;y)−∇xL̂ν

αβ(x2, z
ν , λν , µν ;y)

)T

(x1−x2)≥ cν ∥x1−x2∥2 , ∀x1,x2 ∈X.

(P4) ∇xL̂ν
αβ =

(
∇x1L̂ν

αβ, . . . ,∇xN L̂ν
αβ

)
is Lipschitz continuous on X with constant L̂ν ≥ γν , i.e.,∥∥∥∇xL̂ν

αβ (x1, z
ν , λν , µν ;y)−∇xL̂ν

αβ (x2, z
ν , λν , µν ;y)

∥∥∥≤ L̂ν ∥x1−x2∥ , ∀x1,x2 ∈X.

The properties (P1) and (P2) imply that L̂ν
αβ with γν ≥Lν is a tight upper bound of Lν

αβ around

the given point y. The properties (P3) and (P4) are from the structure of L̂ν
αβ that is the first-order

approximation of Lν
αβ in x at y with quadratic term γν

2
∥x−y∥2.
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Noting that for y = xk and (zν,k, λν,k, µν,k) and for γν ≥Lν , L̂ν
αβ(•, zν,k, λν,k, µν,k;xk) is strongly

convex on X, there must exist a unique minimizer x̂k = (x̂ν,k, x̂−ν,k) at each iteration k such that

∇xν L̂ν
αβ

(
x̂k, zν,k, λν,k, µν,k;xk

)T (
xν − x̂ν,k

)
≥ 0, ν = 1, . . . ,N.

It also follows from (P1) that L̂ν
αβ (x̂k, zν,k, λν,k, µν,k;xk)≤Lν

αβ (xk, zν,k, λν,k, µν,k) . We can construct

a (strongly) monotone approximation mapping L̂k : X→Rn given by

L̂k
(
x, zk, λk, µk;xk

)
:=


∇x1L̂1

αβ (x1, x−1, z1,k, λ1,k, µ1,k;xk)
...

∇xN L̂N
αβ (xN , x−N , zN,k, λN,k, µN,k;xk)

 .
Let us now consider solving the approximate variational inequality VIk(X, L̂k) of finding x̂k:

VIk(X, L̂k) : L̂k
(
x̂k, zk, λk, µk;xk

)T (
x− x̂k

)
≥ 0, ∀x∈X. (18)

It is well known (Facchinei and Pang 2007, Proposition 1.5.8) that x̂k is also a solution to the

system of fixed-point subproblem (or system of nonlinear projected equations) at iteration k:

x̂k−PX

[
x̂k−σL̂k

(
x̂k, zk, λk, µk;xk

)]
= 0, (19)

where PX(x) = argmin{∥x− y∥ : y ∈X} denotes the projection operator onto X and σ > 0 is a

constant. The constant σ > 0 is defined as σ = max
ν=1,...,N

σν such that 0 < σ < (2γ2
min)/L̂max, where

γmin = min
ν=1,...,N

γν and L̂max = max
ν=1,...,N

L̂ν . The choice of σ will be further discussed in the context of

the convergence condition in Lemma 2. For fixed (xk, zk, λk, µk) at iteration k, we use the following

gradient projection to generate a sequence
{
uk,l
}

in inner iterations l = 0,1,2, . . .

uk,l+1 =PX

[
uk,l−σL̂k

(
uk,l, zk, λk, µk;xk

)]
, (20)

equivalently,

uk,l+1 =


u1,k,l+1

...
uν,k,l+1

...
uN,k,l+1

=


PX1

[
u1,k,l−σ

(
∇x1L1

αβ (xk, z1,k, λ1,k, µ1,k) + γ1 (u1,k,l−x1,k)
)]

...
PXν

[
uν,k,l−σ

(
∇xνLν

αβ (xk, zν,k, λν,k, µν,k) + γν (uν,k,l−xν,k)
)]

...
PXN

[
uN,k,l−σ

(
∇xNLN

αβ (xk, zN,k, λN,k, µN,k) + γN (uN,k,l−xN,k)
)]

 ,

(21)

Notice that the structure of ∇xν L̂ν
αβ allows for the inner gradient projection (21) to be imple-

mented in a distributed way since each ν can update its own uν,k,l while keeping xk = (xν,k, x−ν,k)

fixed. Thus, Algorithm 1 allows each ν to choose its own step size σν , ν = 1, . . . ,N . We also note

that when the private strategy set of each player ν includes functional constraints cνj (xν)≤ 0, j =
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1, . . . , pν , they are treated in the same way to handle gν(xν , x−ν) ≤ 0. It follows that the set Xν

remains as a simple constraint, and thus the projection onto Xν is computationally cheap.

The following Lemma shows that the inner gradient projection scheme (21) converges to the

solution x̂k of the subproblem (18) at each iteration k and thus enables us to compute a point

satisfying the desired decrease property for every Lν
αβ during inner iterations.

Lemma 2. Let x̂k be the unique solution to VIk(X, L̂k) (18) and xk ̸= x̂k. Let {uk,l}l≥1 be the

sequence generated by gradient projection (21) with the step size σν. Suppose that for ν = 1, . . . ,N ,

the parameter γν is chosen such that γν ≥Lν where Lν is the Lipschitz constant of ∇xLν
αβ. Then,

(a) for σ̂ := max
ν=1,...,N

σν satisfying 0 < σ̂ < (2γ2
min)/L̂max, where γmin = min

ν=1,...,N
γν, L̂max = max

ν=1,...,N
L̂ν,

and L̂ν is the Lipschitz constant of ∇xL̂ν
αβ, the sequence {uk,l}l≥1 converges to x̂k. That is,

∥∥uk,l+1− x̂k
∥∥≤ τ

∥∥uk,l− x̂k
∥∥ , 0< τ < 1, (22)

where τ =

√
1− 2γminσ̂ + σ̂2L̂max.

(b) thus, the inner gradient projection (21) can compute uk,l+1 sufficiently close to x̂k such that

Lν
αβ(uk,l+1, zν,k, λν,k, µν,k)<Lν

αβ(xk, zν,k, λν,k, µν,k)

for every ν = 1, . . . ,N in a finite number of iterations.

Proof. (a) Fix k ≥ 0 and omit the iterates (zν,k, λν,k, µν,k) for simplicity in the proof. Let x̂ν,k

be νth component of x̂k. By the fixed-point characterization of x̂ν,k

x̂ν,k =PXν

[
x̂ν,k−σν∇xν L̂ν

αβ

(
x̂ν,k;xk

)]
and the contraction property of projection operator PXν [•], we have that for all ν = 1, . . . ,N,∥∥uν,k,l+1− x̂ν,k

∥∥2 =
∥∥∥PXν

[
uν,k,l−σν∇xν L̂ν

αβ

(
uk,l;xk

)]
−PXν

[
x̂ν,k−σν∇xν L̂ν

αβ

(
x̂k;xk

)]∥∥∥2
≤
∥∥∥[uν,k,l−σν∇xν L̂ν

αβ

(
uk,l;xk

)]
−
[
x̂ν,k−σν∇xν L̂ν

αβ

(
x̂k;xk

)]∥∥∥2 . (23)

By expanding the last term on the right, the above inequality can be rewritten as∥∥uν,k,l+1− x̂ν,k
∥∥2 ≤ ∥∥uν,k,l− x̂ν,k

∥∥2− 2σν

(
∇xν L̂ν

αβ(uk,l;xk)−∇xν L̂ν
αβ(x̂k;xk)

)T (
uν,k,l− x̂ν,k

)
+σ2

ν

∥∥∥∇xν L̂ν
αβ(uk,l;xk)−∇xν L̂ν

αβ(x̂k;xk)
∥∥∥2 . (24)

Since L̂ν
αβ is strongly convex in x with constant cν and ∇xL̂ν

αβ is Lipschitz continuous with constant

L̂ν ( (P3) and (P4) in Remark 1), we can estimate the second and third terms on the RHS of (24):(
∇xν L̂ν

αβ

(
uk,l;xk

)
−∇xν L̂ν

αβ

(
x̂k;xk

))T (
uν,k,l− x̂ν,k

)
≥ cν

∥∥uν,k,l− x̂ν,k
∥∥2 , (25)
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αβ

(
uk,l;xk

)
−∇xν L̂ν

αβ

(
x̂k;xk

)∥∥∥≤ L̂ν

∥∥uν,k,l− x̂ν,k
∥∥ . (26)

Note that since L̂ν
αβ is a proximal linearized function with the quadratic term γν

2

∥∥x−xk
∥∥2, we can

take γν = cν . Substituting (25) with γν = cν and (26) into (24) yields

∥∥uν,k,l+1− x̂ν,k
∥∥2 ≤ (1− 2γνσν +σ2

νL̂
2
ν

)∥∥uν,k,l− x̂ν,k
∥∥2 .

Notice that
(

1− 2γνσν +σ2
νL̂

2
ν

)
≥ 0 is satisfied since L̂ν ≥ γν . Now, setting σ̂ := max

ν=1,...,N
σν and

observing that
(

1− 2γν σ̂ + σ̂2L̂2
ν

)
≤
(

1− 2γminσ̂ + σ̂2L̂2
max

)
, where γmin = min

ν=1,...,N
γν and L̂max =

max
ν=1,...,N

L̂ν , it immediately follows that

∥∥uν,k,l+1− x̂ν,k
∥∥2 ≤ (1− 2γminσ̂ + σ̂2L̂2

max

)∥∥uν,k,l− x̂ν,k
∥∥2 .

Thus, for 0< σ̂ < (2γ2
min)/L̂max implying that

(
1− 2γminσ +σ2L̂2

max

)
< 1, we obtain

∥∥uν,k,l+1− x̂ν,k
∥∥≤ τ

∥∥uν,k,l− x̂ν,k
∥∥ , 0< τ < 1, (27)

where τ =

√
1− 2γminσ +σ2L̂2

max. Therefore, by summing over the above inequality for all players

from ν = 1 to N , we deduce the desired result (22).

(b) From the property (P1) in Remark 1 with y = xk, we know that

L̂ν
αβ

(
xk, zν,k, λν,k, µν,k;xk

)
=Lν

αβ

(
xk, zν,k, λν,k, µν,k

)
, ν = 1, . . . ,N. (28)

Since xk ̸= x̂k and uk,l→ x̂k by the result (a), the inner gradient projection (21) can find a point

uk,l+1 close to x̂k such that

L̂ν
αβ

(
uk,l+1, zν,k, λν,k, µν,k;xk

)
< L̂ν

αβ

(
xk, zν,k, λν,k, µν,k;xk

)
, ν = 1, . . . ,N, (29)

in a finite number of iterations. By (P2) in Remark 1 with y = uk,l+1, we have that for any γν ≥Lν ,

Lν
αβ

(
uk,l+1, zν,k, λν,k, µν,k

)
≤ L̂ν

αβ

(
uk,l+1, zν,k, λν,k, µν,k;xk

)
, ν = 1, . . . ,N. (30)

Combining (28), (29), and (30) yields

Lν
αβ

(
uk,l+1, zν,k, λν,k, µν,k

)
<Lν

αβ

(
xk, zν,k, λν,k, µν,k

)
, ν = 1, . . . ,N.

Hence, we can derive the desired decrease property of every Lν
αβ during inner iterations. □
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3.3. Description of Algorithm

We are ready to formally present our distributed algorithm that exploits all the features discussed.

The steps of the proposed algorithm are summarized in Algorithm 1, where the choice of the

proximal parameter γν ≥Lν +
3L2

gν

βν
for updating x will be discussed in detail later (Lemma 4).

Algorithm 1: P-Lagrangian based Alternating Direction Algorithm (PL-ADA)

Input parameters: σν > 0, αν > 0, βν > 0, σ ∈
(

0, 2γ2
min/L̂max

)
, and γν ≥Lν +

3L2
gν

βν
.

Initialization: Set k = 0, and define (xν,0, zν,0, λν,0, µν,0) with λν,0 = µν,0, ν = 1, . . . ,N .

Step 1. Let iteration k be fixed and set uk,0 = xk.
For every ν = 1, . . . ,N , and for fixed (xk, zν,k, λν,k, µν,k), compute uν,k,l+1 according to the
following gradient projection scheme on L̂ν

αβ for inner iterations l = 0,1,2, . . .

while
∥∥∥PX

[
uk,l+1−σL̂k(uk,l+1, zk, λk, µk;xk)

]
−uk,l+1

∥∥∥> ε or

L̂ν
αβ (uk,l+1, zν,k, λν,k, µν,k;xk)−Lν

αβ (xk, zν,k, λν,k, µν,k)≥ 0 do

uν,k,l+1 =PXν

[
uν,k,l−σν∇xν L̂ν

αβ

(
uν,k,l, zν,k, λν,k, µν,k;xk

)]
=PXν

[
uν,k,l−σν

(
∇xνLν

αβ

(
xk, zν,k, λν,k, µν,k

)
+ γν

(
uν,k,l−xν,k

))]
.

end while
Set xk+1 = uk,l+1 := [(u1,k,l+1)T , . . . , (uN,k,l+1)T ]

T
.

Step 2. For ν = 1, . . . ,N , compute zν,k+1 by an exact minimization step on Lν
αβ

zν,k+1 = arg min
zν∈Rmν

{
Lν

αβ

(
xk+1, zν , λν,k, µν,k

)}
=
(
λν,k−µν,k

)
/αν .

Step 3. For ν = 1, . . . ,N , update (λν,k+1, µν,k+1) by exact maximization steps on Lν
αβ

λν,k+1 = arg max
λν∈Rmν

+

{
Lν

αβ

(
xk+1, zν,k+1, λν , µν,k

)}
=

[
µν,k +

1

βν

gν(xk+1)

]+
.

µν,k+1 = arg max
µν∈Rmν

{
Lν

αβ

(
xk+1, zν,k+1, λν,k+1, µν

)}
= λν,k+1.

Step 4. Set k← k + 1 and go to Step 1.

The main computational effort of Algorithm 1 is involved in Step 1 to update primal iterates

from xk to xk+1. If x̂k ̸= xk, by Lemma 2, we can find a point uk,l+1 satisfying both conditions:∥∥∥PX

[
uk,l+1−σL̂k

(
uk,l+1, zk, λk, µk;xk

)]
−uk,l+1

∥∥∥≤ ε (31)

L̂ν
αβ

(
uk,l+1, zν,k, λν,k, µν,k;xk

)
<Lν

αβ

(
xk, zν,k, λν,k, µν,k

)
, ν = 1, . . . ,N, (32)

in a finite number of inner iterations. When the descent condition (32) is satisfied, uk,l+1 is set to

xk+1. Consequently, the decrease of Lν
αβ (xk, zν,k, λν,k, µν,k) value is obtained, that is,

Lν
αβ

(
xk+1, zν,k, λν,k, µν,k

)
≤ L̂ν

αβ

(
xk+1, zν,k, λν,k, µν,k;xk

)
<Lν

αβ

(
xk, zν,k, λν,k, µν,k

)
.

for ν = 1, . . . ,N (see Lemma 2 (b)).

The next step is to update zν by taking exact minimization step (Step 2) on Lν
αβ.
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After the minimization steps have been carried out, given (xk+1, zν,k+1), the multipliers are

updated by exact maximization steps on Lν
αβ. The updates of λν and µν take the explicit forms:

λν,k+1 =

[
µν,k +

1

βν

gν(xk+1)

]+
, µν,k+1 = λν,k+1,

We remark that a point satisfying the fixed-point condition (31) does not necessarily guarantee

that the descent condition (32) holds. Hence, the algorithm keeps updating iterates uk,l until the

condition (32) is satisfied even after condition (31) is met, which may require many inner iterations.

4. Convergence Analysis

In this section, we establish the convergence results of Algorithm 1. We prove that the sequence

generated by Algorithm 1 converges to a saddle point of Lν
αβ(xν , x−ν , zν , λν , µν) for ν = 1, . . . ,N .

In particular, our analysis proceeds with the steps:

1. We show that
∥∥λν,k+1−λν,k

∥∥ can be bounded by
∥∥xk+1−xk

∥∥ (Lemma 3), which is exploited

to show {Lν
αβ} is nonincreasing and convergent (Lemma 4). Then we establish key results;

boundedness of
{
xk
}

, limk→∞
∥∥xk+1−xk

∥∥= 0, and then boundedness of
{
λν,k

}
(Theorem 3).

2. With the bounded sequences, convergence to an equilibrium of the GNEP is proven; we show

that any limit point of the sequence is a saddle point of Lν
αβ (Theorem 4).

3. We establish the global convergence; the generated whole sequence converges to the saddle

point under the assumption of Kurdyka- Lojasiewicz (K L) inequality (Theorem 5).

4.1. Key Properties of Algorithm 1

We first derive an important relation on the dual iterates λν,k with the primal iterates xk; the

difference of two consecutive dual iterates can be bounded by that of the primal iterates.

Lemma 3. Let
{

(xν,k, zν,k, λν,k, µν,k)
}N
ν=1

be the sequence generated by Algorithm 1. Then,

∥∥λν,k+1−λν,k
∥∥2 ≤ L2

gν

β2
ν

∥∥xk+1−xk
∥∥2 , (33)

where Lgν is the Lipschitz constant of gν and βν > 0 is the parameter of −βν
2
∥λν −µν∥2 in Lν

αβ.

Proof. Note that since Lν
αβ is strongly concave in λν for fixed (x, zν , µν), there

exists a unique maximizer, denoted by λ̂ν(x, zν , µν), such that Lν
αβ(x, zν , λ̂ν(x, zν , µν), µν) =

maxλν∈Rmν
+
Lν

αβ (x, zν , λν , µν) . From the update of λν,k defined (as maximizer) in Step 3, we have

∇λνLν
αβ

(
xk+1, zν,k+1, λν,k+1, µν,k

)T (
λν,k−λν,k+1

)
≤ 0,

∇λνLν
αβ

(
xk, zν,k, λν,k, µν,k−1

)T (
λν,k+1−λν,k

)
≤ 0.
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By the definition zν,k+1 = λν,k−µν,k

αν
in Step 2 with λν,k+1 = µν,k+1 in Step 3, we have zν,k+1 = zν,k = 0

for λν,0 = µν,0. Adding the above inequalities and a direct computation of ∇λνLν
αβ give(

∇λνLν
αβ

(
xk+1, zν,k+1, λν,k+1, µν,k

)
−∇λνLν

αβ

(
xk, zν,k, λν,k, µν,k−1

))T (
λν,k−λν,k+1

)
=
(
gν
(
xk+1

)
− gν

(
xk
)
−βν

(
λν,k+1−λν,k

)
+βν

(
µν,k−µν,k−1

))T (
λν,k−λν,k+1

)
=
(
gν
(
xk+1

)
− gν

(
xk
))T (

λν,k−λν,k+1
)

+βν

∥∥λν,k+1−λν,k
∥∥2 +βν

(
µν,k−µν,k−1

)T (
λν,k−λν,k+1

)︸ ︷︷ ︸
≥∥λν,k+1−λν,k∥2

≤ 0,

(34)

where, to bound the third term, we used Lemma 1(a) in Nedic et al. (2010); (x− y)T (x−P [x])≥

∥P [x]−x∥2 with x = µν,k, y = µν,k−1, P [x] = λν,k+1, and the fact µν,k = λν,k. Specifically, since

λν,k+1 maximizes Lν
αβ(xk+1, zν,k+1, λν , µν,k) = θν(xk+1) + (λν)T gν(xk+1)− βν

2

∥∥λν −µν,k
∥∥2, we have

θν(xk+1) +
(
λν,k+1

)T
gν(xk+1)− βν

2

∥∥λν,k+1−µν,k
∥∥2

≥ θν(xk+1) +
(
λ̂ν(xk+1, zk+1, µν,k)

)T

gν(xk+1)− βν

2

∥∥∥λ̂ν(xk+1, zk+1, µν,k)−µν,k
∥∥∥2 ,

and (λν,k+1)
T
gν(xk+1) = λ̂ν (xk+1, zk+1, µν,k)

T
gν(xk+1). It thus follows that

∥∥λν,k+1−µν,k
∥∥≤ ∥∥∥λ̂ν(xk+1, zk+1, µν,k)−µν,k

∥∥∥ ,
which, by definition of projection (Bertsekas and Tsitsiklis 1989, Section 3.4), means that λν,k+1

can be viewed as the projection of µk onto the solution set λ̂ν(xk+1, zk+1, µν,k). We thus see that

(
µν,k−µν,k−1

)T (
λν,k−λν,k+1

)
=
(
λν,k−λν,k−1

)T (
λν,k−λν,k+1

)
≥
∥∥λν,k+1−λν,k

∥∥2 ≥ 0.

By the Cauchy-Schwarz inequality, we also get that
∥∥λν,k−λν,k−1

∥∥≥ ∥∥λν,k+1−λν,k
∥∥, implying the

stable sequence of the multipliers. Rearranging terms in (34), we obtain

βν

∥∥λν,k+1−λν,k
∥∥2 ≤ (gν(xk+1)− gν(xk)

)T (
λν,k+1−λν,k

)
,

which leads to

∥∥λν,k+1−λν,k
∥∥ (i)

≤ 1

βν

∥∥gν(xk+1)− gν(xk)
∥∥ (ii)

≤ Lgν

βν

∥∥xk+1−xk
∥∥ ,

where (i) follows from the Cauchy-Schwarz inequality; (ii) is from the continuous differentiability

of gν(x) (Assumption 1), implying that gν(x) is locally Lipschitz continuous with constant Lgν .

Squaring both sides of the inequality gives the desired result (33). □

With Lemmas 2 and 3, we prove that {Lν
αβ} can be monotonically decreasing and convergent.
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Lemma 4 (Sufficient Decrease and Convergence of {Lν
αβ}). Suppose that Assumptions 1

and 2 hold true, and let
{

(xν,k, zν,k, λν,k, µν,k)
}N
ν=1

be the sequence generated by Algorithm 1. Then

for ν = 1, . . . ,N , we have

Lν
αβ

(
xk+1, zν,k+1, λν,k+1, µν,k+1

)
≤Lν

αβ

(
xk, zν,k, λν,k, µν,k

)
− 1

2

(
γν −Lν −

3L2
gν

βν

)∥∥xk+1−xk
∥∥2 ,

where Lν is the Lipschitz constant of ∇xLν
αβ, γν > 0 is the parameter of γν

2

∥∥x−xk
∥∥2 in L̂ν

αβ, and

βν > 0 is the parameter of −βν
2
∥λ−µ∥2 in Lν

αβ. If γν > 0 is chosen such that γν ≥ Lν +
3L2

gν

βν
, then

the sequence {Lν
αβ} is nonincreasing and convergent.

Proof. Consider the difference of two consecutive sequences of Lν
αβ:

Lν
αβ

(
xk+1, zν,k+1, λν,k+1, µν,k+1

)
−Lν

αβ

(
xk, zν,k, λν,k, µν,k

)
=
[
Lν

αβ

(
xk+1, zν,k+1, λν,k, µν,k

)
−Lν

αβ

(
xk, zν,k, λν,k, µν,k

)]
+
[
Lν

αβ

(
xk+1, zν,k+1, λν,k+1, µν,k+1

)
−Lν

αβ

(
xk+1, zν,k+1, λν,k, µν,k

)]
.

(35)

For the first term in (35), recalling the descent Lemma (Lemma 1), we have

Lν
αβ

(
xk+1

)
≤Lν

αβ

(
xk
)

+∇xLν
αβ

(
xk
)T (

xk+1−xk
)

+
Lν

2

∥∥xk+1−xk
∥∥2 . (36)

Here, we omitted (zν,k, λν,k, µν,k) for simplicity. Since γν ≥Lν , by Lemma 2 and Step 1, we have

L̂ν
αβ

(
xk+1;xk

)
=Lν

αβ

(
xk
)

+∇xLν
αβ

(
xk
)T (

xk+1−xk
)

+
γν
2

∥∥xk+1−xk
∥∥2 ≤ L̂ν

αβ

(
xk;xk

)
=Lν

αβ

(
xk
)
.

Thus,

∇xLν
αβ

(
xk
)T (

xk+1−xk
)
≤−γν

2

∥∥xk+1−xk
∥∥2 .

By substituting the above expression into (36) and using the definition of zν,k+1 in Step 2, we get

Lν
αβ

(
xk+1, zν,k+1, λν,k, µν,k

)
−Lν

αβ

(
xk, zν,k, λν,k, µν,k

)
≤−1

2
(γν −Lν)

∥∥xk+1−xk
∥∥2 . (37)

Next, consider the second term i (35):

Lν
αβ

(
xk+1, zν,k+1, λν,k+1, µν,k+1

)
−Lν

αβ

(
xk+1, zν,k+1, λν,k, µν,k

)
=
(
λν,k+1−λν,k

)T
gν
(
xk+1

)
− βν

2

∥∥λν,k+1−µν,k+1
∥∥2︸ ︷︷ ︸

=0

+
βν

2

∥∥λν,k−µν,k
∥∥2︸ ︷︷ ︸

=0

, (38)

where it follows from Step 3 that the second and third terms on the right-hand side are zero.

We now focus on deriving an upper bound for the term (λν,k+1−λν,k)
T
gν (xk+1). To this end,

we need to consider two cases: µν,k + 1
βν
gν(xk+1)≥ 0 and µν,k + 1

βν
gν(xk+1)< 0.

Case 1. µν,k + 1
βν
gν(xk+1)≥ 0. Since λν,k+1 =

[
µν,k + 1

βν
gν(xk+1)

]+
and λν,k = µν,k, we obtain(

λν,k+1−λν,k
)T

gν(xk+1) = βν

∥∥λν,k+1−λν,k
∥∥2 . (39)
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Case 2. µν,k + 1
βν
gν(xk+1) < 0. In this case, λν,k+1 = 0 and xk+1 is feasible because g(xk+1) < 0.

For convenience, we define

△k := (λν,k+1)T gν(xk+1)− (λν,k)T gν(xk).

By subtracting and adding (λν,k)
T
gν(xk+1) to the RHS and using the fact that λν,k+1 = 0, we have

∥△k∥=
∥∥∥(λν,k+1−λν,k

)T
gν(xk+1) + (λν,k)T

(
gν(xk+1)− gν(xk)

)∥∥∥
≥
∥∥∥(λν,k+1−λν,k

)T
gν(xk+1)

∥∥∥−∥∥∥(λν,k−λν,k+1
)T (

gν(xk+1)− gν(xk)
)∥∥∥ . (40)

From the feasibility of xk+1, we have that for any λν ∈Rmν
+ , µν ∈Rmν and βν > 0

(λν)
T
gν(xk+1)− βν

2
∥λν −µν∥2 ≤ 0.

Thus, we can get with λν = λν,k+1 and µν = λν,k that(
λν,k+1

)T
gν(xk+1)≤ βν

2

∥∥λν,k+1−λν,k
∥∥2 .

On the other hand, since λν,k ≥ 0 maximizes Lν
αβ(xk, zν,k, λν , µν,k−1) = θν (xk) + (λν)

T
gν (xk) −

βν
2

∥∥λν −µν,k−1
∥∥2 for given (xk, µν,k−1) and the third term,

−βν

2

∥∥λν,k−µν,k−1
∥∥2 =

{
− 1

2βν

∥∥gν(xk)
∥∥2 if µν,k−1 + 1

βν
gν(xk)≥ 0

−βν
2

∥∥µν,k−1
∥∥2 otherwise,

is a given constant, we have that (λν,k)
T
gν (xk)≥ 0. Hence,

∥△k∥=
∥∥∥(λν,k+1

)T
gν
(
xk+1

)
−
(
λν,k

)T
gν
(
xk
)∥∥∥≤ βν

2

∥∥λν,k+1−λν,k
∥∥2 , (41)

Combining (40) and (41) and invoking Lemma 3, we obtain∥∥∥(λν,k+1−λν,k
)T

gν(xk+1)
∥∥∥≤ ∥∥∥(λν,k−λν,k+1

)T (
gν(xk+1)− gν(xk)

)∥∥∥+
βν

2

∥∥λν,k+1−λν,k
∥∥2

≤Lg

∥∥λν,k+1−λν,k
∥∥∥∥xk+1−xk

∥∥+
L2

gν

2βν

∥∥xk+1−xk
∥∥2

≤
3L2

gν

2βν

∥∥xk+1−xk
∥∥2 .

(42)

Notice that the above upper bound on
∥∥∥(λν,k+1−λν,k)

T
gν(xk+1)

∥∥∥ includes the upper bound in

Case 1. Therefore, by combining (37), (38) and (42), we obtain the desired result:

Lν
αβ(xk+1, zν,k+1, λν,k+1, µν,k+1)≤Lν

αβ(xk, zν,k, λν,k, µν,k)− 1

2

(
γν −Lν −

3L2
g

βν

)∥∥xk+1−xk
∥∥2 ,

which implies that the sequence
{
Lν

αβ (xk, zν,k, λν,k, µν,k)
}

is monotonically decreasing if γν is chosen

such that γν >Lν +
3L2

gν

βν
with a suitable choice of βν > 0.
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Next, we show that {Lν
αβ} is convergent. We know from Theorem 2 that a saddle point of Lν

αβ

exists. Let (x∗, zν,∗, λν,∗, µν,∗) be a saddle point of Lν
αβ(x, zν , λν , µν). By the updating rules for

(λν,k+1, µν,k+1) defined as maximizers for the updated (xk+1, zk+1), we see that

Lν
αβ

(
xk+1, zν,k+1, λν,k+1, µν,k+1

)
≥Lν

αβ

(
xk+1, zν,k+1, λν,∗µν,∗)≥Lν

αβ (x∗, zν,∗, λν,∗, µν,∗)>−∞, (43)

which implies that the sequence
{
Lν

αβ (xk, zν,k, λν,k, µν,k)
}

is lower bounded by a finite value of

Lν
αβ (x∗, zν,∗, λν,∗, µν,∗). Thus, with the choice of γν > 0 such that γν ≥ Lν +

3L2
gν

βν
, the sequence{

Lν
αβ (xk, zν,k, λν,k, µν,k)

}
converges to a finite limit, denoted by Lν , as k→∞. □

Next, we provide our key results that the generated sequence is bounded and asymptotic regular.

Theorem 3. Suppose that Assumptions 1−3 hold and that there exists a GNE of the GNEP (1)

satisfying the KKT conditions (3) for ν = 1, . . . ,N . Let
{

(xν,k, zν,k, λν,k, µν,k)
}N
ν=1

be the sequence

generated by Algorithm 1 with the parameters set to γν > 0 such that γν ≥Lν +
3L2

gν

βν
. Then,

(a) the primal sequence
{
xk
}

is bounded;

(b) the sequence of the multiplier
{
λν,k

}
is bounded;

(c) it holds that
∑∞

k=1

∥∥xk+1−xk
∥∥2 <∞ and

∑∞
k=1

∥∥λν,k+1−λν,k
∥∥2 <∞, and hence

lim
k→∞

∥∥xk+1−xk
∥∥= 0, lim

k→∞

∥∥λν,k+1−λν,k
∥∥= 0, and lim

k→∞

∥∥µν,k+1−µν,k
∥∥= 0. (44)

Proof. (a) Recall from Theorem 2 that a saddle point (x∗, zν,∗, λν,∗, µν,∗) of Lν
αβ(x, zν , λν , µν)

exists. From (43) in Lemma 4, we know that Lν
αβ(xk, zν,k, λν,k, µν,k) is lower bounded by

Lν
αβ (x∗, zν,∗, λν,∗, µν,∗). Since Lν

αβ (xk, zν,k, λν,k, µν,k) is nonincreasing, it is also upper bounded by

a finite value, i.e, Lν
αβ(xk, zν,k, λν,k, µν,k)<∞. We thus have

−∞<Lν
αβ(xk+1, zν,k+1, λν,k+1, µν,k+1) = θ(xk+1) + (λν,k+1)T g(xk+1)<+∞.

Hence,
{
xk
}

is bounded due to the coercivity of θν(x) (Assumption 3) with the facts λν,k+1 ≥ 0

and (λν,k+1)T gν(xk+1)≥ 0.

(b) Note that since the function λν→Lαβ(x, zν , λν , µν) is strongly concave, there exists param-

eter cλν > 0 such that for λν,∗, λν,k+1 ∈Rmν
+ and for given (xk+1, zν,k+1, µν,k)

Lν
αβ(λν,∗, µν,k)≤Lν

αβ(λν,k+1, µν,k) +∇λνLν
αβ(λν,k+1, µν,k)T (λν,∗−λν,k+1)− cλν

2

∥∥λν,k+1−λν,∗
∥∥2

Lν
αβ(λν,k+1, µν,k)≤Lν

αβ(λν,∗, µν,k) +∇λνLν
αβ(λν,∗, µν,k)T (λν,k+1−λν,∗)− cλν

2

∥∥λν,k+1−λν,∗
∥∥2 ,

where we omitted (xk+1, zν,k+1) for notational simplicity. Adding the above two inequalities yields

cλν
∥∥λν,k+1−λν,∗

∥∥2 ≤ (∇λνLν
αβ(λν,k+1, µν,k)−∇λνLν

αβ(λν,∗, µν,k)
)T (

λν,∗−λν,k+1
)
.
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Using the Cauchy-Schwarz inequality and the triangle inequality, we obtain∥∥λν,k+1−λν,∗
∥∥≤ 1

cλν

∥∥∇λνLν
αβ

(
λν,k+1, µν,k

)
−∇λνLν

αβ(λν,∗, µν,k)
∥∥

(a)

≤ 1

cλν

∥∥βν

(
λν,∗−µν,k

)
− gν(xk+1)

∥∥≤ βν

cλν

∥∥λν,k−λν,∗
∥∥+

1

cλν

∥∥gν(xk+1)
∥∥ .

where the inequality (a) comes from the definition of λν,k+1 in Step 3, implying that λν,k+1 ≥

µν,k + 1
βν
g(xk+1). Since {xk} is bounded and gν(x) is continuous differentiable (Assumption 1),

there exists Dν > 0 such that
∥∥gν (xk+1)

∥∥≤Dν . From the update of µν,k+1 = λν,k+1 in Step 3, we

have λk = µk for any k≥ 1. By taking cλν = βν we have

∥∥λν,k+1−λν,∗
∥∥≤ ∥∥λν,k−λν,∗

∥∥+Dν/βν .

Therefore, the sequence
{
λν,k

}
is bounded on any subset of Rmν

+ .

(c) Invoking Lemma 4, we have that for all k≥ 1

ρν
∥∥xk+1−xk

∥∥2 ≤Lν
αβ

(
xk, zν,k, λν,k, µν,k

)
−Lν

αβ

(
xk+1, zν,k+1, λν,k+1, µν,k+1

)
,

where ρν := 1
2

(
γν −Lν −

3Lgν

2βν

)
> 0. Summing the above inequality over k = 1, . . . ,K, we obtain

K∑
k=1

∥∥xk+1−xk
∥∥2 ≤ 1

ρν

(
Lν

αβ

(
x1, zν,1, λν,1, µν,1

)
−Lν

αβ

(
xK+1, zν,K+1, λν,K+1, µν,K+1

))
≤ 1

ρν

(
Lν

αβ

(
x1, zν,1, λν,1, µν,1

)
− θν (x∗)

)
,

where the last inequality is from (43) and Lν
αβ(x∗, zν,∗, λν,∗, µν,∗) = θν (x∗). Letting K→∞ yields

∞∑
k=1

∥∥xk+1−xk
∥∥2 <∞,

from which, along with Lemma 3, it also follows immediately that
∑∞

k=1

∥∥λν,k+1−λν,k
∥∥2 <∞ and∑∞

k=1

∥∥µν,k+1−µν,k
∥∥2 <∞. Therefore, we can deduce the desired results in (44). □

4.2. Main Convergence Results

We are ready to establish our main convergence results. We first show that any limit point of the

sequence produced by Algorithm 1 is a saddle point of Lν
αβ for all ν = 1, . . . ,N .

Theorem 4 (Subsequence Convergence). Suppose that Assumptions 1−3 hold and that

there exists a GNE of the GNEP (1) such that the KKT conditions (3) are satisfied for every

ν = 1, . . . ,N . Let
{

(xν,k, zν,k, λν,k, µν,k)
}N
ν=1

be the sequence generated by Algorithm 1. Then, the

sequence
{

(xν,k, zν,k, λν,k, µν,k)
}N
ν=1

converges to a point (x, zν , λ
ν
, µν) satisfying the saddle point

condition (8).
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Proof. Since the sequence
{

(xk, zν,k, λν,k, µν,k)
}

is bounded, there exists at least one limit

point. Let (x, z, λ,µ) be a limit point of
{

(xk, zν,k, λν,k, µν,k)
}

, and let
{

(xkj , zν,kj , λν,kj , µν,kj )
}

be a subsequence converging to (x, z, λ,µ) as j →∞. From Theorem 3(c), it also follows that{
(xkj+1, zν,kj+1, λν,kj+1, µν,kj+1)

}
→ (x, z, λ,µ) as j→∞.

First, we show that a limit point (x, zν , λ
ν
, µν) satisfies the second inequality of the saddle point

condition (8). Because
{
xν,kj+1

}
→ xν and

{
xν,kj

}
→ xν as j→∞, we have from Step 1 that

xν =PXν

[
xν −σν∇xν L̂ν

αβ(x, zν , λ
ν
, µν ;x)

]
.

The limit point xν is equivalent to a solution of the VI (Facchinei and Pang 2007, Prop. 1.5.8):

∇xν L̂ν
αβ(x, zν , λ

ν
, µν ;x)T (xν −xν)≥ 0, ∀xν ∈Xν .

Using the fact that ∇xν L̂ν
αβ(x, zν , λ

ν
, µν ;x) =∇xνLν

αβ(x, zν , λ
ν
, µν) and the convexity of Lν

αβ with

respect to xν , we obtain the first-order optimality condition for Lν
αβ:

∇xνLν
αβ(x, zν , λ

ν
, µν)T (xν −xν)≥ 0, ∀xν ∈Xν ,

which implies that (x, zν , λ
ν
, µν) satisfies the second inequality of the saddle point condition (8):

Lν
αβ(xν , x−ν , zν , λ

ν
, µν)≤Lν

αβ(xν , x−ν , zν , λ
ν
, µν).

Similarly, by the definitions λν,k+1 and µν,k+1 (as maximizers) in Step 3, the limit points (λ
ν
, µν)

maximize Lν
αβ(x, zν(λν , µν), λν , µν). We thus have that

∇λνLν
αβ(x, zν , λ

ν
, µν)T (λν −λ

ν
)≤ 0, ∀λν ∈Rmν

+ ,

∇µνLν
αβ(x, zν , λ

ν
, µν)T (µν −µν)≤ 0, ∀µν ∈Rmν .

Consequently, (x, zν , λ
ν
, µν) satisfies the first inequality of the saddle point condition (8). □

We now strengthen the subsequence convergence result, under an additional assumption that θν

and gνi satisfy the Kurdyka- Lojasiewicz (K L) property ( Lojasiewicz 1963, Kurdyka 1998). Before

proceeding with global convergence, we briefly review the K L property.

Definition 3 (K L Property & K L function). Let δ ∈ (0,+∞]. Denote by Φδ the class of

all concave and continuous functions φ : [0, δ)→R+, which satisfy the following conditions:

(i) φ(0) = 0;

(ii) φ is continuously differentiable (C1) on [0, δ) and continuous at 0;

(iii) for all s∈ (0, δ) :φ′ > 0.
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A proper and lower semicontinuous function Ψ : Rn → (−∞,+∞] is said to have the Kurdyka-

 Lojasiewicz (K L) property at u ∈ dom ∂Ψ := {u∈Rn : ∂Ψ(u) = ∅} if there exist δ ∈ (0,+∞], a

neighborhood U of u and a function φ∈Φδ, such that

φ′(Ψ(u)−Ψ(u)) ·dist(0, ∂Ψ(u))≥ 1

for all u∈U(u)∩{u : Ψ(u)<Ψ(u)<Ψ(u) + δ}. The function Ψ satisfying the K L property at each

point of dom ∂Ψ is called a K L function.

Lemma 5 (Uniformized K L Property (Bolte et al. 2014, Lemma 6)). Let Ω be a com-

pact set and let Ψ : Rn→ (−∞,∞] be proper, lower semicontinuous function. Assume that Ψ is

constant on Ω and satisfies the K L property at each point of Ω. Then there exist ε > 0, δ and φ∈Φδ

such that for all u in Ω and all u in the following intersection:

{u∈Rn : dist(u,Ω)< ε}∩ [Ψ(u)<Ψ(u)<Ψ(u) + δ] (45)

one has,

φ′(Ψ(u)−Ψ(u)) ·dist(0, ∂Ψ(u))≥ 1. (46)

If Ψ is continuously differentiable and Ψ(u) = 0, the inequality (46) can be rewritten as

φ′(Ψ(u)−Ψ(u))∥∇Ψ(u)∥ ≥ 1.

With the uniformized K L property, we can prove that the generated sequence has finite length,

and hence the whole sequence converges to a saddle point. The techniques developed in Bolte et al.

(2014) are extended to our smooth constrained game setting with some modifications.

In order to exploit Lemma 5 for proving global convergence, we use the size of the gradient of

the P-Lagrangian, denoted by ∇̃Lαβ, and derive an upper bound on the gradient. Noting that θν

and gν are continuously differentiable, xν ∈Xν , and λν ∈Rmν
+ , we consider the projected gradients

of Lν
αβ in xν and λν for xν-component and λν-component of ∇̃Lαβ:

∇̃xνLν
αβ(x, zν , λν , µν) := xν −PXν

[
xν −∇xνLν

αβ(x, zν , λν , µν)
]
,

∇̃λνLν
αβ(x, zν , λν , µν) := λν −

[
λν +∇λνLν

αβ(x, zν , λν , µν)
]+

.

Let us now define the projected gradient of Lν
αβ at (xk+1, zν,k+1, λν,k+1, µν,k+1) as

∇̃Lν
αβ(wν,k+1) :=


qk+1
xν

qk+1
zν

qk+1
λν

qk+1
µν

=


xν,k+1−PXν

[
xν,k+1−∇xνLν

αβ(xk+1, zν,k+1, λν,k+1, µν,k+1)
]

∇zνLν
αβ(xk+1, zν,k+1, λν,k+1, µν,k+1)

λν,k+1−
[
λν,k+1 +∇λνLν

αβ(xk+1, zν,k+1, λν,k+1, µν,k+1)
]+

∇µνLν
αβ(xk+1, zν,k+1, λν,k+1, µν,k+1)

 . (47)
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It is clear that if ∇̃Lν
αβ(wν,k+1)→ 0, a saddle point of Lν

αβ(wν) is obtained. We derive an upper

bound on ∇̃Lν
αβ(wν,k+1) in terms of the generated iterates. In addition, we recall that by Assump-

tion 2 imply there exist constants M∇θν and M∇gν such that

∥∇xνθν (x1)−∇xνθν (x2)∥ ≤M∇θν ∥x1−x2∥ , ∀x1,x2 ∈X, (48a)

∥∇xνg
ν (x1)−∇xνg

ν (x2)∥ ≤M∇gν ∥x1−x2∥ , ∀x1,x2 ∈Xν , (48b)

Lemma 6. Let
{
wν,k

}N
ν=1

be the sequence generated by Algorithm 1. Then, for every ν = 1, . . . ,N ,

there exist constant Cν > 0 such that for all k≥ 0

∥∇̃Lν
αβ(wν,k+1)∥ ≤Cν∥xk+1−xk∥. (49)

Proof. We first estimate an upper bound for qk+1
xν in ∇̃Lν

αβ(wν,k+1). Recall that there exists a

unique solution x̂k of VIk(X, L̂k) in (18) at each iteration k (Lemma 2), and denote by x̂ν,k the νth

component of x̂k. From the fixed-point characterization of x̂ν,k, we know that for every ν = 1, . . . ,N,

x̂ν,k =PXν

[
x̂ν,k−

(
∇xνθν(xk) +∇xνg

ν(xk)λν,k + γν(x̂ν,k−xν,k)
)]

.

Hence,∥∥qk+1
xν

∥∥=
∥∥xν,k+1− x̂ν,k

∥∥+
∥∥PXν

[
x̂ν,k−∇xνθν(xk)−∇xνg

ν(xk)λν,k− γν(x̂ν,k−xν,k)
]

−PXν

[
xν,k+1−∇xνθν(xk+1)−∇xνg

ν(xk+1)λν,k+1
]∥∥

(a)

≤
∥∥xν,k+1− x̂ν,k

∥∥+
∥∥[x̂ν,k−∇xνθν(xk)−∇xνg

ν(xk)λν,k− γν(x̂ν,k−xν,k)
]

−
[
xν,k+1−∇xνθν(xk+1)−∇xνg

ν(xk+1)λν,k+1
]∥∥

(b)

≤ (2 + γν)
∥∥xk+1−xk

∥∥+
∥∥∇xνθν(xk+1)−∇xνθν(xk) +∇xνg

ν(xk+1)λν,k+1−∇xνg
ν(xk)λν,k

∥∥ ,
where (a) follows from the non-expansive property of the projection operator, and (b) is due to

the facts that
∥∥xν,k+1− x̂ν,k

∥∥≤ ∥∥xν,k+1−xν,k
∥∥ and

∥∥xν,k+1−xν,k
∥∥≤ ∥∥xk+1−xk

∥∥. Then, by adding

and subtracting gν(xk)λν,k+1 and using the triangle inequality, we obtain∥∥qk+1
xν

∥∥≤ (2 + γν)
∥∥xk+1−xk

∥∥+
∥∥∇xνθν(xk+1)−∇xνθν(xk)

∥∥
+
∥∥∇xνg

ν(xk+1)λν,k+1−∇xνg
ν(xk)λν,k+1

∥∥+
∥∥∇xνg

ν(xk)λν,k+1−∇xνg
ν(xk)λν,k

∥∥
≤ (2 + γν)

∥∥xk+1−xk
∥∥+M∇θν

∥∥xk+1−xk
∥∥+M∇gνBλν

∥∥xk+1−xk
∥∥+Rgν

∥∥λν,k+1−λν,k
∥∥

≤
(

2 + γν +M∇θν +M∇gνBλν +
RgνLgν

βν

)∥∥xk+1−xk
∥∥ , (50)

where the second inequality is due to the Lipschitz continuity of ∇xνθν and ∇xνg
ν and the

boundedness of
{
xk
}

and
{
λν,k

}
, implying there exist constants Bλν := maxk∈N

∥∥λν,k
∥∥ and Rgν :=

maxk∈N
∥∥∇xνg

ν(xk)
∥∥; the last inequality is from

∥∥λν,k+1−λν,k
∥∥≤ Lgν

βν

∥∥xk+1−xk
∥∥ (Lemma 3).
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Next, by the definition λν,k+1 ∈Rmν
+ as a maximizer, λν,k+1 is characterized by

λν,k+1 =
[
λν,k+1 +∇λνLν

αβ(xk+1, zν,k+1, λν,k+1, µν,k)
]+

,

which, together with the nonexpansive property of the projection onto Rmν
+ and Lemma 3, yields

∥∥qk+1
λν

∥∥=
∥∥∥[λν,k+1 + (gν(xk+1)− zν,k+1)−βν(λν,k+1−µν,k)

]+
−
[
λν,k+1 + (gν(xk+1)− zν,k+1)−βν(λν,k+1−µν,k+1)

]+∥∥∥
≤
∥∥βν(µν,k+1−µν,k)

∥∥≤Lgν

∥∥xk+1−xk
∥∥ . (51)

In addition, recalling that the definitions of zν,k+1 in Step 2 and µν,k+1 in Step 3, we have

∥∥qk+1
zν

∥∥=
∥∥(µν,k+1−λν,k+1) +ανz

ν,k+1
∥∥= 0, (52)∥∥qk+1

µν

∥∥=
∥∥zν,k+1 +βν(λν,k+1−µν,k+1)

∥∥= 0. (53)

Therefore, summing the inequalities (50) and (51), we deduce that for all k≥ 0∥∥∥∇̃L(wν,k+1)
∥∥∥=

∑
i=xν ,zν ,λν ,µν

∥∥qν,k+1
i

∥∥≤Cν

∥∥xk+1−xk
∥∥

with positive constant Cν = 2 + γν +M∇θν +M∇gνBλν +
RgνLgν

βν
+Lgν . □

Theorem 5 (Global Convergence). Suppose that the assumptions required for Theorem 4

hold. Let
{
wν,k := (xk, zν,k, λν,k, µν,k)

}N
ν=1

be the sequence generated by Algorithm 1. If θν and gν,

ν = 1, . . . ,N , satisfy the K L property, then
{
wν,k

}N
ν=1

has finite length, i.e.,

∞∑
k=1

∥∥wν,k+1−wν,k
∥∥<+∞,

and the whole sequence
{

(xν,k, zν,k, λν,k, µν,k)
}N
ν=1

converges to a saddle point (x, zν , λ
ν
, µν) of Lν

αβ.

Proof. Let wν := (x, zν , λ
ν
, µν) be a limit point of

{
wν,k = (xk, zν,k, λν,k, µν,k)

}
that is bounded

for every ν = 1, . . . ,N . Then, by the continuity of Lν
αβ, we have

lim
k→∞
Lν

αβ(wν,k) =Lν
αβ(wν). (54)

In the following, we consider two cases:

Case 1. Suppose that there exists an integer k̄ such that Lν
αβ(wν,k̄) =Lν

αβ(wν) for ν = 1, . . . ,N .

Since the sequence
{
Lν

αβ

}
is nonincreasing, we have that Lν

αβ(wν,k) =Lν
αβ(wν) for all k≥ k̄. Then,

we have from Lemma 4 that for any t≥ 0

ρν
∥∥xk+t−xk

∥∥2 ≤Lν
αβ(wν,k)−Lν

αβ(wν,k+t) = 0,
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which leads to

xk+1−xk = 0, ∀k≥ k̄, (55)

From Lemma 3, we also obtain that λν,k+1−λν,k = 0 and µν,k+1−µν,k = 0 for all k≥ k̄. Therefore,{
wν,k = (xk, zν,k, λν,k, µν,k)

}
must be eventually constant (stationary), and it thus has finite length.

Case 2. Consider the case where such an integer k̄ does not exist (and every
{
wν,k

}
is non-

stationary) for ν = 1, . . . ,N . In this case, we first show that the P-Lagrangian Lν
αβ is finite and

constant on the set of all limit points ων(wν
0) of

{
wν,k

}
, and then apply Lemma 5 to show that{

wν,k
}

is a Cauchy sequence and convergent.

First, since the sequence {Lν
αβ} is nonincreasing, we have Lν

αβ(wν,k) > Lν
αβ(wν) for all k. This,

along with (54), implies that there exists an integer k0 such that for any ε > 0 and δ > 0:

Lν
αβ(wν)<Lν

αβ(wν,k)<Lν
αβ(wν) + δ and dist(wν,k, ω(wν

0))< ε for all k≥ k0, (56)

where the second comes from the fact that limk→∞dist(wν,k, ω(wν
0)) = 0 (see Theorem 4). Thus{

wν,k
}

belongs to the intersection in (45) with Ω = ων(wν
0) for all k ≥ k0, and Ω = ων(wν

0) is

nonempty and compact. Recall that {Lν
αβ} is bounded below by the value of Lν

αβ at a saddle

point, and hence {Lν
αβ} converges to a finite limit, denoted by Lν . It then follows from (54) that

Lν =Lν
αβ(wν), which shows that Lν

αβ is finite and constant on ων(wν
0).

Thus, since Lν
αβ is a KL function, by applying Lemma 5 with Ω = ων(wν

0) and ∂Ψ(u) =

∇̃Lν
αβ(wν,k), we get that for any k > k0

φ′ (Lν
αβ(wν,k)−Lν

αβ(wν)
)
·dist

(
0, ∇̃Lν

αβ(wν,k)
)
≥ 1,

which combined with Lemma 6 gives

φ′ (Lν
αβ(wν,k)−Lν

αβ(wν)
)
≥ 1

dist
(

0, ∇̃Lν
αβ(wν,k)

) ≥ 1

Cν ∥xk−xk−1∥
. (57)

On the other hand, since φ is concave function, we know that

φ
(
Lν

αβ(wν,k)−Lν
αβ(wν)

)
−φ

(
Lν

αβ(wν,k+1)−Lν
αβ(wν)

)
≥φ′ (Lν

αβ(wν,k)−Lν
αβ(wν)

) (
Lν

αβ(wν,k)−Lν
αβ(wν,k+1)

)
.

For convenience, we define for any p, q ∈N

△p,q :=φ
(
Lν

αβ(wν,p)−Lν
αβ(wν)

)
−φ

(
Lν

αβ(wν,q)−Lν
αβ(wν)

)
.

Then we get

△k,k+1 ≥φ′ (Lν
αβ(wν,k)−Lν

αβ(wν)
) (
Lν

αβ(wν,k)−Lν
αβ(wν,k+1)

)
. (58)
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Recalling that Lν
αβ(wν,k)−Lν

αβ(wν,k+1)≥ ρν
∥∥xk+1−xk

∥∥2, we combine (57) and (58) to obtain

△k,k+1 ≥
ρν
∥∥xk+1−xk

∥∥2
Cν ∥xk−xk−1∥

.

Multiplying the above inequality by Cν
ρν

∥∥xk−xk−1
∥∥ gives∥∥xk+1−xk

∥∥2 ≤ ξν△k,k+1

∥∥xk−xk−1
∥∥ where ξν =Cν/ρν ,

and hence 2
∥∥xk+1−xk

∥∥ ≤ 2
√
ξν△k,k+1 ∥xk−xk−1∥. Using the inequality 2

√
ab ≤ a + b for any

a, b≥ 0 with a=
∥∥xk−xk−1

∥∥ and b= ξν△k,k+1, we have

2
∥∥xk+1−xk

∥∥≤ ∥∥xk−xk−1
∥∥+ ξν△k,k+1. (59)

Now we show that for any k > k0 the following inequality holds:

2
k∑

l=k0+1

∥∥xl+1−xl
∥∥≤ ∥∥xk0+1−xk0

∥∥+ ξν△k0+1,k+1.

By summing (59) over l = k0 + 1, . . . , k, we have

2
k∑

l=k0+1

∥∥xl+1−xl
∥∥≤ k∑

l=k0+1

∥∥xl−xl−1
∥∥+ ξν

k∑
l=k0+1

△l,l+1

≤
k∑

l=k0+1

∥∥xl+1−xl
∥∥+

∥∥xk0+1−xk0
∥∥+ ξν

k∑
l=k0+1

△l,l+1 (60)

and using fact that △p,q +△q,r =△p,r for all p, q, r ∈N, we get

k∑
l=k0+1

△l,l+1 =△k0+1,k+1 =φ
(
Lν

αβ(wν,k0+1)−Lν
αβ(wν)

)
−φ

(
Lν

αβ(wν,k0+2)−Lν
αβ(wν)

)
≤φ

(
Lν

αβ(wν,k0+1)−Lν
αβ(wν)

)
<∞, (61)

where the last inequality is from the fact that φ≥ 0. Plugging (61) into (60), we obtain

k∑
l=k0+1

∥∥xl+1−xl
∥∥≤ ∥∥xk0+1−xk0

∥∥+ ξνφ
(
Lν

αβ(wν,k0+1)−Lν
αβ(wν)

)
<∞. (62)

Since the right-hand side of (62) does not depends k, the sequence
{
xk
}

has finite length, i.e.,

∞∑
k=1

∥∥xk+1−xk
∥∥<∞.

This implies
{
xk
}

is a Cauchy sequence and thus a convergent sequence. By Lemma 3, the multiplier

sequences {λν,k} and {µν,k} are also Cauchy. Therefore, we conclude that the whole sequence{
(xk, zν,k, λν,k, µν,k)

}
converges to a saddle point (x, zν , λ

ν
, µν) of Lν

αβ, ν = 1, . . . ,N . □

Note that verifying the K L property of a function might be difficult. However, it is known that

semi-algebraic and real-analytic functions, which capture many applications, are classes of functions

that satisfy the K L property; see e.g., Attouch and Bolte (2009), Attouch et al. (2013), Xu and Yin

(2013), Li and Pong (2018) for an in-depth study of the K L functions and illustrating examples.
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5. Computational Results

We present computational results to demonstrate the effectiveness of Algorithm 1. We conducted

experiments on test problems taken from a library of GNEPs, as used in Facchinei and Kanzow

(2010b), Dreves et al. (2011), Kanzow and Steck (2016). The experiments were carried out using

MATLAB (R2018a) on a laptop with an Intel Core i5-6300U CPU 2.50GHz 8GB RAM. Two

classes of instances were considered in the experiments: general GNEPs (A.1-A.10) and jointly-

convex GNEPs (A.11-A.18). We refer the readers to Facchinei and Kanzow (2009) for a detailed

description of the problems with data. Before present the results, it is noteworthy to mention how

our test settings for the Arrow-Debreu equilibrium problems (A.10 (a)-(e)) differ from those in

Facchinei and Kanzow (2009). Specifically, our setup includes production variables in consumers’

constraints (pTxi ≤ pT ξi +
∑J

j=1 qijp
Tyj), while the constraints in Facchinei and Kanzow (2009)

were set to pTxi ≤ pT ξi. This reflects the original Arrow-Debreu model better.

In the numerical experiments, we used the starting points listed in Facchinei and Kanzow (2010b),

and the other variables’ initial points were set to (zν,0, λν,0, µν,0) = (0,0,0) for every ν = 1, . . . ,N .

As for the parameters, we used fixed parameters set to αν = 10 and βν = 1 for each player’s P-

Lagrangian across all test problems. In addition, a large parameter γν was used so that γν ≥

Lν +
3L2

gν

βν
and a diminishing step size σν was simply used for every player ν in each problem. The

stopping criterion is set as

max
ν=1,...,N

{∥∥xν,k+1−xν,k
∥∥
∞ ,
∥∥λν,k+1−λν,k

∥∥
∞

}
≤ 10−4.

The computational results of our algorithm for the test problems are summarized in Table 1. The

notations used in the table are as follows: the number of players ‘N ’, the number of variables ‘n’,

the number of constraints ‘m’, the starting point ‘x0’ (a specific reported number indicates that

all primal variables are uniformly initialized to that value), the total (cumulative) number of inner

iterations ‘Iter.’, and the computation time in CPU seconds ‘Time (s)’.

We make some remarks on the computational results. Algorithm 1 successfully solved all test

problems. On the other hand, the exact penalty algorithm (Facchinei and Kanzow 2010b) failed to

find solutions for problems A.2, A.7, and A.8, and the interior-point algorithm (Dreves et al. 2011)

and the augmented Lagrangian method (Kanzow and Steck 2016) were unable to find a GNE for

the instance A.8. This is attributed to their sensitivity to initial points and choices of parameters,

while Algorithm 1 is insensitive to initialization and does not require (penalty) parameter updates.

Additionally, algorithm 1 converges to a GNE in fewer iterations, due to its favorable structure: it

employs a first-order scheme on strongly (smooth) convex approximations for the x-update, along

with exact maximization steps with fixed step sizes for the multiplier updates.
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Furthermore, our algorithm consistently demonstrates fast convergence to a GNE in each prob-

lem. The convergence speed is primarily determined by how efficiently the subproblems are solved.

Our algorithm employs a first-order scheme combined with Jacobi-type decomposition on a strongly

convex approximation, and it includes a cost-effective projection onto the simple set Xν for the

x-update. These features enable the algorithm to circumvent the computational burden of solving

a nonlinear system of equations during each (outer) iteration. Consequently, our algorithm achieves

convergence to a GNE within a very short CPU time for each instance.

Illustrative Examples

To see how Algorithm 1 performs on GNEPs well, we provide numerical results for three important

and practical instances with graphical illustrations.

Problem A.9 (a) (Power allocation in telecommunications). This model is described in

detail in Pang et al. (2008) and represents a realistic communication system subject to Quality-of-

Service (QoS) constraints. There are N links transmitting to K different Base Stations by using K

different channels. Link ν transmits with power xν = (xν
1 , . . . , x

ν
K), and denote by x = (x1, . . . , xN)

the power allocation of all links. The GNEP model is defined by

minimize
xν

K∑
i=1

xν
i subject to

K∑
i=1

log2

1 +
hνν
i xν

i

(σν
i )

2
+
∑
µ̸=ν

hνµ
i xµ

i

≥Lν , xν ≥ 0,

where hνµ
i is the power gain between transmitter µ and receiver ν on the ith channel, (σν

i )
2

is the

noise of link ν on the ith channel, and Lν is the minimum transmission target rate for link ν.

This instance sets σν
i = 0.3162 for all ν and i, K = 8, Lν = 8 for all players, and the starting point

was set to (0, . . . ,0). The data of coefficient h is given in Facchinei and Kanzow (2009). As shown in

Figure 1, the P-Lagrangian values {Lν
αβ}, ν = 1, . . . ,7, are monotonically decreasing and convergent,

as expected. Additionally, Figure 2 illustrates that the iterates of xν , ν = 1,3,5, converge to a point

satisfying the minimum target rate of 8. Note that since the coupling constraints are relaxed into

the objective with the multipliers, the projection onto Xν = {xν ∈Rnν : xν ≥ 0} performs efficiently,

which leads to convergence to a GNE within a short CPU time of 0.32 seconds.

Problem A.10 (a) (Arrow-Debreu general equilibrium model). This model is introduced

by Arrow and Debreu (1954) and described in Facchinei and Kanzow (2010a) in detail. In this

instance, there are 8 players (I = 5, J = 2, and one market player) and 3 goods (K = 3). The

market player sets (normalized) prices p ∈ RK
+ for the market clearing problem. The jth firm

maximizes its profit by determining production quantity yj ∈ Yj, where Yj ⊆ RK is a production
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Table 1 Computational results for Algorithm 1.

general GNEP N n m x0 Iter. Time (s)

A.1 10 10 20 0.01 38 < 0.01

0.1 36 < 0.01

1 38 < 0.01

A.2 10 10 24 0.01 610 0.04

0.1 536 0.04

1 683 0.05

A.3 3 7 18 0 51 0.01

1 51 0.01

A.4 3 7 18 0 7 < 0.01

1 7 < 0.01

10 7 < 0.01

A.5 3 7 18 0 82 0.02

1 82 0.02

10 82 0.02

A.6 3 7 21 0 49 0.02

1 49 0.02

10 49 0.02

A.7 4 20 44 0 48 0.02

1 48 0.02

10 48 0.02

A.8 3 3 8 0 45 < 0.01

1 45 < 0.01

10 45 < 0.01

A.9 (a) 7 56 63 0 108 0.32

A.9 (b) 7 112 119 0 135 1.24

A.10 (a) 8 24 33 0 780 0.10

A.10 (b) 25 125 151 1 1374 0.67

A.10 (c) 37 222 260 0 2154 1.12

A.10 (d) 37 370 408 1 3251 1.35

A.10 (e) 48 576 625 1 4728 2.54

jointly-convex GNEP N n m x0 Iter. Time (s)

A.11 2 2 2 0 12 < 0.01

A.12 2 2 4 (2,0) 10 < 0.01

A.13 3 3 9 0 15 < 0.01

A.14 10 10 20 0.01 38 < 0.01

A.15 3 6 12 0 145 < 0.01

A.16 (P=75) 5 5 10 10 52 0.02

A.16 (P=100) 5 5 10 10 52 0.02

A.16 (P=150) 5 5 10 10 52 0.02

A.16 (P=200) 5 5 10 10 52 0.02

A.17 2 3 7 0 9 < 0.01

A.18 2 12 28 0 114 0.02
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Figure 1 Convergence behaviors of P-Lagrangian Lν
αβ, ν = 1, . . . ,7.
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Figure 2 Trajectories of the iterates of variables x1
i , x

3
i , and x5

i , i= 1, . . . ,8, with sum-rates.

set. The ith consumer decides on goods quantity xi ∈Xi to maximize its utility, where Xi ⊆RK is

a consumption set. The GNEP is defined as the set of problems of three types of players:

max
yj

pTyj max
xi∈Xi

ui(x
i) max

p
pT

(
I∑

i=1

xi−
J∑

j=1

yj −
I∑

i=1

ξi

)

s.t. yj ∈ Yj, s.t. pTxi ≤ pT

(
ξi +

J∑
j=1

qijy
j

)
, s.t.

K∑
k=1

pk = 1, pk ≥ 0,

where qij ≥ 0 is the fraction of the profit of the jth production owned by consumer i such that∑I

i=1 qij = 1, and ξi ∈RK
+ is an initial endowment of goods. The utility functions ui are quadratic
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and concave, ui(x
i) = − 1

2
(xi)TQixi + (bi)Txi, and jth firm’s production set is defined by Yj ={

yj
∣∣∣yj ≥ 0,

∑K

k=1(y
j
k)2 ≤ 10 · j

}
. The detailed data is given in Facchinei and Kanzow (2009). Start-

ing point is set to xi,0 = 0, yj,0 = 0, and p0 = (1/3,1/3,1/3). The convergence behaviors are shown

in Figures 3 and 4. We see that the results also verify our theoretical findings. Figure 3 shows that

all P-Lagrangian values are decreasing and convergent to finite values. Figure 4 illustrates that the

iterates generated by Algorithm 1 converge to the equilibrium price p= (0.1441,0.5270,0.3289), as

well as to the equilibrium production and consumption.
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Figure 4 Convergence of the sequence of decision variables for each player.
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6. Conclusions

In this paper, we proposed a novel algorithmic framework for computing an equilibrium of general-

ized continuous Nash games (GNEPs) with theoretical guarantees based on the Proximal-Perturbed

Lagrangian function. We have shown that the proposed method has significant advantages over

existing approaches from both theoretical and computational perspectives; it does not require

boundedness assumptions and is the first development of an algorithm to solve a general class of

GNEPs in a distributed manner. The numerical results supported our theoretical findings. Pos-

sible future research is to extend our methodology to compute equilibria in nonconvex games or

stochastic games with coupling constraints that arise in economics and operations research, which

will result in a broader application domain.
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