
1

A Fast Single-Loop Primal-Dual Algorithm for
Non-Convex Functional Constrained Optimization

Jong Gwang Kim, Ashish Chandra, Abolfazl Hashemi, Christopher G. Brinton

Abstract—Non-convex functional constrained optimization prob-
lems have gained substantial attention in machine learning
and signal processing. This paper develops a new primal-dual
algorithm for solving this class of problems. The algorithm is based
on a novel form of the Lagrangian function, termed Proximal-
Perturbed Augmented Lagrangian, which enables us to develop
an efficient and simple first-order algorithm that converges to
a stationary solution under mild conditions. Our method has
several key features of differentiation over existing augmented
Lagrangian-based methods: (i) it is a single-loop algorithm
that does not require the continuous adjustment of the penalty
parameter to infinity; (ii) it can achieves an improved iteration
complexity of Õ(1/ϵ2) or at least O(1/ϵ2/q) with q ∈ (2/3, 1)
for computing an ϵ-approximate stationary solution, compared
to the best-known complexity of O(1/ϵ3); and (iii) it effectively
handles functional constraints for feasibility guarantees with
fixed parameters, without imposing boundedness assumptions on
the dual iterates and the penalty parameters. We validate the
effectiveness of our method through numerical experiments on
popular non-convex problems.

Index Terms—non-convex optimization, functional constraints,
primal-dual method, first-order algorithm, iteration complexity.

I. INTRODUCTION

WE consider the following non-convex optimization
problem with functional constraints:

min
x∈Rn

f(x) + r(x) s. t. g(x) ≤ 0, (1)

where f : Rn → R is a continuously differentiable and
possibly non-convex function; g : Rn → Rm is a continu-
ously differentiable and possibly non-convex mapping; and
r : Rn → R ∪ {+∞} is a proper, closed, and convex (but
possibly non-smooth) function.

Problems of the form (1) appear in a wide range of applica-
tions in signal processing and machine learning, e.g., wireless
transmit/receive beamforming design [38, 40], and constrained
classification/detection problems [17, 34, 47]. Solving non-
convex problems, even those without constraints, is generally
challenging, as finding even an approximate global minimum
is often computationally intractable [30]. The presence of
functional constraints g(x) in (1) that can potentially be non-
convex is critical for many of the applications mentioned
above, yet it makes the problem even more challenging. A

Jong Gwang Kim is with the Coles College of Busines, Kennesaw State
University, Kennesaw, GA 30144, USA. Email: jkim311@kennesaw.edu.

Ashish Chandra is with the Department of Management and Quantitative
Methods, College of Business, Illinois State University, Normal, IL 61761,
USA. Email: achand6@ilstu.edu.

Abolfazl Hashemi and Christopher G. Brinton are with the School of
Electrical and Computer Engineering, Purdue University, West Lafayette, IN
47906, USA. Email:{abolfazl,cgb}@purdue.edu.

further complication arises since in many of these applications,
problem (1) tends to be large-scale, i.e., with large variable
dimension n [10]. Hence, developing first-order methods that
can find stationary solutions with lower complexity bounds is
highly desirable.

Augmented Lagrangian (AL)-based algorithms are a prevail-
ing class of approaches for constrained optimization problems.
The foundational AL method, introduced by [16] and [33],
has been a powerful algorithmic framework built on by
many contemporary algorithms. In particular, the Alternating
Direction Method of Multipliers (ADMM) scheme has been
widely employed for solving constrained optimization problems
based on the AL framework; see [3, 4] and recent works for
constrained convex settings [31, 21, 45, 26, 46].

However, AL-based methods remain fairly limited for
problems in the general form of (1) due to challenges posed
by the non-convexity of the objective and constraint functions.
Specifically, two major challenges arise: (i) difficulty in
controlling the multipliers due to the absence of strong duality
and, as a result, (ii) the need for careful updating of the penalty
parameters to ensure the solution’s feasibility. Consequently,
existing analyses of AL-based methods, with the best-known
guarantees of O(1/ϵ3) for a given ϵ > 0, require increasing
penalty parameters to infinity to ensure feasibility, leading to
higher iteration complexity. Effective handling of the multiplier
sequence is thus an important and challenging task, given the
increasing penalty parameters otherwise required for feasibility
guarantees. Motivated by this, we aim to answer the question:

Can we design an algorithm to solve problems of the
form (1) with an iteration complexity bound lower
than the best-known result of O(1/ϵ3)?

To answer this question, we develop an efficient and easy-to-
implement primal-dual method for solving problem (1) with an
improved complexity result. In particular, for a given accuracy
ϵ > 0, we propose a single-loop first-order method, based on
a new augmented Lagrangian, to compute an ϵ-approximate
stationary solution (see Definition 2). We show that our method
achieves an iteration complexity of Õ(1/ϵ2) in terms of the
number of gradient evaluations.1

A. Related Work

We review the literature on iteration complexity and con-
vergence of AL and penalty-based methods for non-convex

1In this paper, the notation Õ(·) suppresses all logarithmic factors in terms
of ϵ from the big-O notation.

2

TABLE I
COMMON BOUNDEDNESS AND REGULARITY ASSUMPTIONS OF ALGORITHMS FOR NON-CONVEX CONSTRAINED OPTIMIZATION PROBLEMS.

Condition Description

B Either dom(r) is bounded and/or the feasible set is bounded.
N For every x ∈ dom(r), there exists d > 0 such that ∂r(x) ⊆ Ndom(r)(x) +Bd(0), Bd(0) := {x : ∥x∥ ≤ d}.
CO Coercivity: the objective f(x) is coercive, i.e., lim∥x∥→∞ f(x) = ∞.
RC Regularity Condition: there is a constant v > 0 such that v∥[g(xk)]

+∥ ≤ dist
(
0,∇g(xk)[g(xk)]

+ + ∂r(xk)/ρk−1

)
for the generated sequence {xk} and increasing sequence of penalty parameters {ρk}.

SC Slater’s Condition: there exists x̄ ∈ int(dom(r)) such that g(x̄) < 0.
CQ MFCQ: there exists d ∈ Rn such that ∇gj(x)

⊤d < 0 for all j ∈ J(x) = {j | gj(x) = 0}.

TABLE II
KEY PROPERTIES OF RECENT ALGORITHMS FOR SOLVING NON-CONVEX CONSTRAINED OPTIMIZATION PROBLEMS COMPARED WITH OUR METHOD.

Algorithm Constraints Complexity Simplicity Key conditions

S-Prox ALM [49] linear O(1/ϵ2) single-loop B,SC
NL-IAPIAL [18] convex Õ(1/ϵ3) double-loop B,N ,SC
NOVA [37] non-convex unknown double-loop CO, CQ
iALM [36] non-convex Õ(1/ϵ4) double-loop B,RC
iALM [23] non-convex Õ(1/ϵ3) double-loop B,RC
IPPP [25] non-convex Õ(1/ϵ3) triple-loop B,N ,SC
GDPA [27] non-convex O(1/ϵ3) single-loop B,RC

This paper non-convex Õ(1/ϵ2) single-loop B

constrained problems. To facilitate the discussion, Table I
summarizes key assumptions imposed by existing algorithms.
Table II differentiates our work from several key existing papers,
comparing the constraint types handled, iteration complexities,
algorithmic simplicity, and necessary conditions from Table I.

Linearly constrained non-convex problems. Many existing
works have focused on the class of problems where g(x) in (1)
is linear. [15] introduced a perturbed-proximal primal-dual
algorithm, with an iteration complexity of Õ(1/ϵ4), under the
assumption of a feasible initialization. [19] proposed proximal
AL methods that obtain the improved complexity result of
Õ(1/ϵ3) under Slater’s condition. Finally, [48, 49] proposed
a first-order single-loop proximal AL method that achieves
O(1/ϵ2) iteration complexity, which relies on error bounds
that are dependent on the Hoffman constant of the polyhedral
constraints.2 However, estimating the Hoffman constant is
known to be difficult in practice.

Non-convex functional constrained problems. There are
several recent works that focus on the iteration complexity of
first-order AL-based methods or penalty methods to solve (1)
[11, 37, 23, 25, 27, 18, 36]. [37] proposed double-loop
distributed primal-dual algorithms with asymptotic convergence
guarantees, under the coercivity assumption and Mangasarian-
Fromovitz constraint qualification (MFCQ). However, it has
been observed that many non-convex problems do not have
a strict relative interior, and thus have an unbounded set of
multipliers [14], which violates MFCQ. More recently, a set of

2The Hoffman constant κ is the smallest number such that for any x,
dist(x, {y | Ay ≤ b}) ≤ κ∥(Ax − b)+∥, where (Ax − b)+ denotes the
positive part of Ax− b.

methods have emerged employing the regularity condition (RC)
from Table I for ensuring solution feasibility. [36] proposed
a double-loop inexact AL method (iALM) that achieves an
Õ(1/ϵ4) iteration complexity. [23] improved the iteration
complexity to Õ(1/ϵ3), which is obtained using a triple loop
iALM. [18] established an Õ(1/ϵ3) complexity bound of the
proximal AL method (NL-IAPIAL) for non-convex problems
with nonlinear convex constraints. [27] proposed the first single-
loop gradient-based algorithm that achieves the best-known
iteration complexity O(1/ϵ3) for (1). However, the regularity
condition is non-standard and rather strong as it forces a
relationship between feasibility of the generated iterates and
first-order optimality. We are thus motivated to develop an
algorithm that improves iteration complexity without requiring
this assumption.

B. Our Contributions

We develop a novel AL-based method for solving non-convex
constrained optimization problems which has improved iteration
complexity, computation workload, and weaker assumption
requirements. Specifically:

• We propose a single-loop first-order algorithm for non-
convex optimization problems with functional constraints,
based on a novel Lagrangian function. The proposed
algorithm can achieves an ϵ-KKT solution with Õ(1/ϵ2)
iteration complexity, which improves the best-known
O(1/ϵ3) complexity for the functionally constrained non-
convex setting. Importantly, the algorithm does not require
the strong regularity condition used in other AL-based
algorithms [23, 25, 27, 36].

3

• To establish the above results, we conduct a comprehensive
convergence analysis of our method. Thanks to the
favorable structure of our Lagrangian, our proofs are
surprisingly compact compared to existing works. Our
analysis does not impose any boundedness assumptions
on the multiplier sequence, surjectivity of the Jacobian
∇g(x) [6, 9], or boundedness of penalty parameters [13].
It also does not require the feasibility of initialization as
in [7, 42, 44].

• By using a fixed penalty parameter, our algorithm achieves
improved computational efficiency and ease of imple-
mentation compared to existing schemes. Specifically, we
neither require linear independence constraint qualification
(LICQ) to ensure boundedness of penalty parameters [41],
nor computational efforts for careful updating scheme of
the penalty parameters. Our numerical results validate
that compared with existing methods, our use of a fixed
penalty parameter achieves more consistent progress
toward solution stationarity and feasibility.

C. Outline

Section II provides the notation, definitions, and assumptions
that we use throughout the paper. In Section III, we introduce
the new Lagrangian and propose a first-order primal-dual
algorithm. In Section IV, we establish the convergence results
of our algorithm. Section V presents numerical results on
commonly encountered problems in signal processing and
machine learning to demonstrate the effectiveness of the
proposed algorithm.

II. PRELIMINARIES

We provide some notation used throughout the paper. Let
Rn and Rn

+ denote the n-dimensional Euclidean space and
the non-negative orthant, respectively. We let [m] denote the
set {1, . . . ,m}. The vector inner product is denoted by ⟨·, ·⟩.
The Euclidean norm of matrices and vectors are denoted
by ∥ · ∥. The distance function between a vector x and a
set X ⊆ Rn is defined by dist(x,X) := infy∈X ∥y − x∥.
The domain of a proper extended real-valued function r
is defined by dom(r) := {x ∈ Rn : r(x) < +∞} . The
subgradient of a convex function r at x is denoted by ∂r(x) :=

{d ∈ Rn : r(y) ≥ r(x) + ⟨d,y − x⟩ ,∀y ∈ Rn, x ∈ dom(r)} .
We say a function r is proper if dom(r) ̸= ∅ and it does
not take the value −∞. The function r is called closed if
it is lower semicontinuous, i.e., lim infx→x0 r(x) ≥ r(x0)
for any x0 ∈ Rn. Given a proper, closed, and convex
function r : Rn → R ∪ {+∞}, x ∈ Rn and η > 0, the
proximal map associated with r is uniquely defined by
proxηr(x) = argminy∈Rn

{
r(y) + 1

2η∥x− y∥2
}
.

Next, we provide the formal definitions and assumptions
for the class of functions, and the optimality measure under
consideration. Assuming that a suitable constraint qualification
(CQ) hold, the stationary solutions of problem (1) can be
characterized by the points (x∗,λ∗) satisfying the Karush-
Kuhn-Tucker (KKT) conditions [2]:

Definition 1 (The KKT point). A point x∗ is called a KKT
point for problem (1) if there exists λ∗ ∈ Rm such that{

0 ∈ ∇f(x∗) + ∂r(x∗) + ⟨∇g(x∗),λ∗⟩,
λ∗
j ≥ 0, gj(x

∗) ≤ 0, λjgj(x
∗) = 0, j ∈ [m].

(2)

A suitable CQ is necessary for the existence of multipliers
that satisfy the KKT conditions (e.g., MFCQ, CPLD, and
others; see [1]). In practice, it is difficult to find an exact
KKT solution (x∗,λ∗) that satisfies (2). We are thus interested
in finding an approximate KKT solution defined as ϵ-KKT
solution of problem (1):

Definition 2 (ϵ-KKT solution). Given ϵ > 0, a point x⋆

is called an ϵ-KKT solution for problem (1) if there exists
λ⋆ ∈ Rm

+ such that{
v⋆ ∈ ∇f(x⋆) + ∂r(x⋆) +∇g(x⋆)λ⋆, ∥v⋆∥ ≤ ϵ,

∥max{0, g(x⋆)}∥ ≤ ϵ, ⟨λ, g(x⋆)⟩ ≤ ϵ,

where max{0, g(x⋆)} denotes the component-wise maximum
of g(x⋆) and the zero vector 0 at x⋆.

We make the following assumptions on problem (1).

Assumption 3. There exists a point (x,λ) ∈ dom(r) × Rm

satisfying the KKT conditions (2).

Assumption 4. ∇f and ∇g are Lf -Lipschitz continuous and
Lg-Lipschitz continuous on dom(r), respectively. That is, there
exist Lf , Lg > 0 such that

∥∇f(x)−∇f(x′)∥ ≤ Lf∥x− x′∥, ∀x,x′ ∈ dom(r),

∥∇g(x)−∇g(x′)∥ ≤ Lg∥x− x′∥, ∀x,x′ ∈ dom(r).

Assumption 5. The domain of r is compact, i.e., Dx :=
maxx,x′∈dom(r)∥x− x′∥ < +∞.

The assumptions above are quite standard and are satisfied
by a wide range of practical problems in signal processing and
machine learning [6, 24, 23, 27, 18, 28]. In this work, we do
not make some restrictive assumptions found in prior work,
including the surjectivity of ∇g(x) (or that ∇g(x)∇g(x)⊤ is
positive definite) [6, 8, 9, 22], feasibility of the initialization
[7, 15, 44], and Slater’s condition [7, 18]. Note that many
problems with an unbounded dom(r) can be reformulated as
problems satisfying Assumption 5. Specifically, as long as
f is bounded below and r is coercive, the problem can be
reformulated as a problem with f + r for some r (e.g., norm
functions) with a compact domain [28].

We also note that under Assumption 5, there exist constants
Bg > 0 and Mg > 0 such that

max
x∈dom(r)

∥g(x)∥ ≤ Bg and max
x∈dom(r)

∥∇g(x)∥ ≤ Mg, (3)

which implies Lipschitz continuity of g [35, Chapter 9.B], i.e.,
∥g(x)− g(x′)∥ ≤ Mg∥x− x′∥, ∀x,x′ ∈ dom(r).

III. PROXIMAL-PERTURBED AUGMENTED
LAGRANGIAN ALGORITHM

In this section, we present our novel form of augmented
Lagrangian (Section III-A) and propose a single-loop primal-
dual algorithm based on it (Section III-B).

4

A. Proximal-Perturbed Augmented Lagrangian

We first recast problem (1) as an equivalent equality-
constrained problem using slack variables u ∈ Rm

+ [2]:

min
x∈Rn,u∈Rm

+

f(x) + r(x) s. t. g(x) + u = 0. (4)

By employing perturbation variables z ∈ Rm and letting
g(x) + u = z and z = 0, we then transform problem (4) into
an extended formulation:

min
x∈Rn,u∈Rm

+ ,z∈Rm
f(x) + r(x) s. t. g(x) + u = z, z = 0.

The equivalence of the extended formulation with problem (4)
is obvious for the unique solution z∗ = 0. Now we define the
Proximal-Perturbed Augmented Lagrangian (PPAL):

Lρ(x,u, z,λ,µ) = ℓρ(x,u, z,λ,µ) + r(x), (5)

where

ℓρ(·) := f(x) + ⟨λ, g(x) + u− z⟩+ ⟨µ, z⟩+ α

2
∥z∥2

− β

2
∥λ− µ∥2 + ρ

2
∥g(x) + u∥2. (6)

Here, λ ∈ Rm is the multiplier (dual) associated with the
functional constraint g(x) + u − z = 0 and µ ∈ Rm is the
(auxiliary) multiplier associated with the additional constraint
z = 0. α > 0 is a penalty parameter, β > 0 is a dual proximal
parameter, and ρ > 0 is a penalty parameter set to ρ := α

1+αβ .
The PPAL function, Lρ(x,u, z,λ,µ), presents a favorable

structure for the development of efficient algorithms to solve
non-convex constrained optimization problems. Its structure
differentiates it from the standard AL function and its variants
as described in e.g., [3, 4] and references therein. Specifically,
note the additional constraint z = 0 is penalized with the
quadratic term α

2 ∥z∥
2, and the negative quadratic term −β

2 ∥λ−
µ∥2 is added to the Lagrangian. To see the reasoning here,
observe that if we minimize

{
−⟨λ− µ, z⟩+ α

2 ∥z∥
2
}

with
respect to z for given (λ,µ), we have

−(λ− µ) + αz = 0 =⇒ z(λ,µ) = (λ− µ)/α, (7)

which implies λ = µ at the solution z∗ = 0. Based on
the relation between λ and µ at z∗ = 0, a proximal dual
regularization term −β

2 ∥λ− µ∥2 was incorporated, to make
the Lagrangian smooth and strongly concave in λ for fixed µ
and in µ for fixed λ. This strong concavity enables us to design
an efficient and stable dual update scheme in Section III-B.
Substituting z(λ,µ) into Lρ(x,u, z,λ,µ) yields the following
reduced PPAL:

Lρ(x,u, z(λ,µ),λ,µ) = f(x) + ⟨λ, g(x) + u⟩ − 1

2ρ
∥λ− µ∥2

+
ρ

2
∥g(x) + u∥2 + r(x). (8)

Note that Lρ(x,u, z(λ,µ),λ,µ) is 1
ρ -strongly concave in λ

and hence there exists a unique maximizer λ(x,µ). Maximiz-
ing Lρ(x,u, z(λ,µ),λ,µ) with respect to λ, we obtain

λ(x,µ) = argmax
λ∈Rm

Lρ(x,u, z(λ,µ),λ,µ)

= µ+ ρ(g(x) + u), (9)

which will be used for the update of λ in (13).

Algorithm 1 PPAL-based first-order Algorithm (PPALA)
1: Input: Initialization (x0,u0, z0,λ0,µ0), and parameters

α > 1, β ∈ (0, 1), ρ = α
1+αβ , and K.

2: for k = 0, 1, . . . ,K do
3: Compute xk+1 by the proximal gradient scheme:

xk+1 = argmin
x∈Rn

{⟨∇xℓρ(xk,uk, zk,λk,µk),x− xk⟩

+(1/2η)∥x− xk∥2 + r(x)
}
; (10)

4: Compute uk+1 by the projected gradient descent:

uk+1 = Π[0,U][uk − τ(λk + ρ(g(xk+1) + uk)]; (11)

5: Update the auxiliary multiplier µk+1 by:

µk+1 = µk + σk(λk − µk), σk =
δk

∥λk − µk∥2 + 1
;

(12)

6: Update the multiplier λk+1 by

λk+1 = µk+1 + ρ(g(xk+1) + uk+1); (13)

7: Compute zk+1 by

zk+1 =
1

α
(λk+1 − µk+1); (14)

8: end for

B. Description of Algorithm

We propose a single-loop first-order algorithm based on the
properties of our PPAL that computes a stationary solution to
the problem (1). At each iteration, the algorithm first updates
x inexactly by

xk+1 = argmin
x∈Rn

{⟨∇xℓρ(xk, zk,λk,µk),x− xk⟩

+(1/2η)∥x− xk∥2 + r(x)
}
,

which is known as the proximal gradient mapping (see e.g.,
[5]) and can be rewritten as

xk+1 = proxηr [xk − η∇xℓρ(xk,uk, zk,λk,µk)] .

The next step is to update slack variable u using a projected
gradient descent on Lρ:

uk+1 = Π[0,U][uk − τ(∇uLρ(xk,uk, zk,λk,µk)]

= Π[0,U][uk − τ(λk + ρ(g(xk+1) + uk)],

where Π[0,U](u) := argmin {∥u− v∥ | v ∈ [0, U]} denotes the
projection of u onto the set [0, U]. Note that, without loss of
generality, we can construct an upper bound U := Bg on
uk+1 ∈ Rm

+ from (3) since we have ∥g(x)∥ ≤ Bg for all
feasible solutions x.

Next, the auxiliary multiplier µ is updated as

µk+1 = µk + σk(λk − µk).

Here, the step size σk > 0 is defined by σk = δk
∥λk−µk∥2+1 in

which δk is a diminishing sequence satisfying the conditions:

δ0 ∈ (0, 1], lim
k→∞

δk = 0, and
∞∑
k=0

δk = +∞. (15)

5

In particular, we employ the following sequence in our
algorithm for which the conditions in (15) hold:

δk =
1

p · kq + 1
,

2

3
< q ≤ 1, (16)

where p is a positive constant. Note that several alternatives
are available for the sequence {δk} satisfying the conditions in
(15). Two popular alternative step sizes are: (i) δk = δ0

(k+1)q ,
where δ0 > 0 and 0 < q ≤ 1, and (ii) δk = δk−1

1−bδk−1
, where

δ0 ∈ (0, 1] and b ∈ (0, 1); see e.g., [2, 39] for more possibilities
for {δk}. As we will see in Theorem 11 and Corollary 12, a
benefit of (16) and choosing q ∈ (2/3, 1] is that it allows our
algorithm to achieve improved complexity bounds compared
to O(1/ϵ3) found in existing works (see Table II).

With updated (xk+1,uk+1,µk+1), the multiplier λ is then
updated using (9):

λk+1 = µk+1 + ρ(g(xk+1) + uk+1).

The last step is to update z via an exact minimization scheme
on Lρ for the updated (λk+1,µk+1) with fixed parameter
α > 0 based on (7):

zk+1 = argmin
z∈Rm

{
Lρ(xk+1,uk+1, z,λk+1,µk+1)

}
= (λk+1 − µk+1)/α.

The steps of our proposed algorithm are summarized in
Algorithm 1.

IV. CONVERGENCE ANALYSIS

In this section, we establish the convergence results of Algo-
rithm 1. We prove that the sequence generated by Algorithm 1
converges to a KKT point as defined in (2). A roadmap of our
analysis is as follows:

1) First, we provide important relations on the sequences
{λk}, {µk}, and {xk} (Lemma 6) as well as the
boundedness of multipliers {λk} and {µk} (Lemma 7),
directly derived from the structure of our algorithm. We
also show the Lipschitz continuity of ∇xℓρ (Lemma 8).

2) The above results are exploited to show that the sequence
{Lρ} is approximately decreasing and convergent (Lemma
9). Then, using the error bound for the subgradient of
Lρ (Lemma 10), together with Lemma 9, we prove the
convergence of primal sequences {xk} and {uk} to some
finite values satisfying stationarity in the KKT conditions
(Theorem 11).

3) By building on the above results and utilizing the def-
initions of λk+1 and µk+1, we readily establish the
feasibility guarantees (Theorem 14).

A. Intermediate Inequalities and Bounds

We first provide basic yet crucial relations on the sequences
{λk}, {µk}, and {xk}.

Lemma 6. Under Assumption 5, let {(xk,uk, zk,λk,µk)} be
the sequence generated by Algorithm 1 with the choice of the
sequence {δk} as in (16). Then, for any k ≥ 1,

∥µk+1 − µk∥2 = σ2
k∥λk − µk∥2 ≤ δ2k/4, (17)

σk∥λk − µk∥2 ≤ δk, (18)

∥µk+1 − λk∥2 = (1− σk)
2∥λk − µk∥2, (19)

∥λk+1 − λk∥2 ≤ 3ρ2M2
g ∥xk+1 − xk∥2

+ 3ρ2∥uk+1 − uk∥2 + 3δ2k/4. (20)

where Mg denotes the Lipschitz constant of g from (3).

Proof. From the µ-update and noting that a+ b ≥ 2
√
ab for

any a, b ≥ 0, we obtain the relations in (17):

∥µk+1 − µk∥2 = σ2
k∥λk − µk∥2

=
δ2k

∥λk − µk∥2 + 2 + 1
∥λk−µk∥2

≤ δ2k
4
.

By the definitions σk = δk
∥λk−µk∥2+1 ≤ 1 and δk ∈ (0, 1], we

know that σk ≤ 1. Thus, we obtain the relation (18):

σk∥λk − µk∥2 =
δk

1 + 1
∥λk−µk∥2

≤ δk.

Subtracting µk+1 from λk yields

∥λk−µk+1∥ = ∥λk−µk−σk(λk−µk)∥ = (1−σk)∥λk−µk∥.

Squaring both sides of the inequality yields the relation (19).
By the λ-update in (13), the Lipschitz continuity of g, and

the triangle inequality, we have

∥λk+1 − λk∥
≤ ∥µk+1 − µk∥+ ρ∥g(xk+1) + uk+1 − g(xk)− uk∥
≤ ∥µk+1 − µk∥+ ρMg∥xk+1 − xk∥+ ρ∥uk+1 − uk∥,

which, along with the fact (a+ b+ c)2 ≤ 3(a2 + b2 + c2) and
the relation (17), provides the relation (20).

The relations in Lemma 6 are critical to our technique for
proving convergence, bypassing the need for the surjectivity of
the Jacobian ∇g(x) as in [6, 9]. We next provide the important
property that the multiplier sequences are bounded with our
algorithm.

Lemma 7 (Bounded multipliers). Under Assumption 5, let
{(xk,uk, zk,λk,µk)} be the sequence generated by Algorithm
1. If the diminishing sequence {δk} for the dual step size
sequence {σk} is chosen as in (16), then the sequences of the
multipliers {µk} and {λk} are bounded. That is, there exist
constants Bµ, Bλ > 0 such that ∥µk∥ ≤ Bµ and ∥λk∥ ≤ Bλ

for all k ≥ 0.

Proof. Note from the λ-update in (13) that for any k ≥ 0,
λk − µk = ρ(g(xk) + uk). Given the boundedness of g(xk)
from (3), the boundedness of uk from (11), and the fixed value
of ρ > 0, it follows that (λk −µk) is bounded. Since σk → 0
and (λk − µk) is bounded, by the µ-update in (12), we have
that {µk+1} is convergent, in turn implying that {µk+1} is
bounded. It thus also follows that {λk+1} is bounded.

6

Next, we show the Lipschitz continuity of ∇xℓρ, which is
directly derived from Assumptions 4, 5, and Lemma 7.

Lemma 8. Suppose that Assumptions 4 and 5 hold. Then, there
exists a constant Lℓ > 0 such that

ℓρ(xk+1) ≤ ℓρ(xk) + ⟨∇xℓρ(xk),xk+1 − xk⟩

+
Lℓ

2
∥xk+1 − xk∥2, (21)

where Lℓ := Lf + LgBλ + ρ(LgBu + LgBg + M2
g)

with Bλ = maxk≥0 ∥λk∥, Bu = maxk≥0 ∥uk∥, Bg =
maxx∈dom(r) ∥g(x)∥ and Mg = maxx∈dom(r) ∥∇g(x)∥ from
(3). Here, we omitted (uk, zk,λk,µk) in the argument of ℓρ(·)
for simplicity.

Proof. Note that ∇xℓρ(x,u, z,λ,µ) = ∇f(x) +∇g(x)(λ+
ρ(g(x) + u)). A direct computation gives

∥∇xℓρ(xk+1)−∇xℓρ(xk)∥
≤ ∥∇f(xk+1)−∇f(xk)∥
+ ∥ (∇g(xk+1)−∇g(xk)) (λk + ρuk)∥
+ ρ∥∇g(xk+1)g(xk+1)−∇g(xk)g(xk+1)∥
+ ρ∥∇g(xk)g(xk+1)−∇g(xk)g(xk)∥

≤ Lf∥xk+1 − xk∥+ Lg(Bλ + ρBu)∥xk+1 − xk∥
+ ρLgBg∥xk+1 − xk∥+ ρM2

g ∥xk+1 − xk∥
≤
(
Lf + LgBλ + ρ(LgBu + LgBg +M2

g)
)
∥xk+1 − xk∥.

Hence, by the descent lemma [2, Proposition A.24], we obtain
the desired result.

B. Key Properties of Algorithm 1

In this subsection, we establish key properties of Algorithm
1 that lead to our main convergence results. For convenience,
we often use the notation wk := (xk,uk, zk,λk,µk) for the
sequence generated by Algorithm 1.

Lemma 9. Suppose that Assumptions 4 and 5 hold. Let
the sequence {wk = (xk,uk, zk,λk,µk)} be generated by
Algorithm 1. Choose the step sizes η and τ so that 0 < η <

1
Lℓ+3ρM2

g
and 0 < τ < 1

2ρ , and set the sequence {δk} as in
(16). Then the following assertions hold true:

(a) (Approximate decrease of Lρ) it holds that

Lρ(wk+1)− Lρ(wk)

≤ −c1∥xk+1 − xk∥2 − c2∥uk+1 − uk∥2 + δ̂k,

where c1 = 1
2

(
1
η − Lℓ − 3ρM2

g

)
> 0, c2 =

(
1
τ − 2ρ

)
>

0, and δ̂k :=
δ2k
4ρ + δk

ρ .

(b) (Convergence of Lρ) the sequence {Lρ(wk)} is conver-
gent, i.e., limk→∞ Lρ(wk+1) := Lρ > −∞.

Proof. (a) The difference between two consecutive sequences
of Lρ can be divided into four parts:

Lρ(wk+1)− Lρ(wk)

= [Lρ(xk+1,uk, zk,λk,µk)− Lρ(wk)] (22a)
+ [Lρ(xk+1,uk+1, zk,λk,µk)

− Lρ(xk+1,uk, zk,λk,µk)] (22b)
+ [Lρ(xk+1,uk+1, zk,λk+1,µk+1)

− Lρ(xk+1,uk+1, zk,λk,µk)] (22c)

+
[
Lρ(wk+1)− Lρ(xk+1,uk+1, zk,λk+1,µk+1)

]
. (22d)

First, we consider (22a). Writing Lρ(xk+1) =
Lρ(xk+1,uk, zk,λk,µk), and using Lemma 8, we have

ℓρ(xk+1) ≤ ℓρ(xk) + ⟨∇xℓρ(xk),xk+1 − xk⟩

+
Lℓ

2
∥xk+1 − xk∥2.

(23)

From the definition of xk+1 in (10), it follows that

Lρ(xk) ≥ ℓρ(xk) + ⟨∇xℓρ(xk),xk+1 − xk⟩

+
1

2η
∥xk+1 − xk∥2 + r(xk+1),

implying ⟨∇xℓρ(xk),xk+1 − xk⟩+ r(xk+1) ≤ − 1
2η∥xk+1 −

xk∥2 + r(xk). Combining the this expression with (23) yields

Lρ(xk+1,uk, zk,λk,µk)− Lρ(xk,uk, zk,λk,µk)

≤ −1

2

(
1

η
− Lℓ

)
∥xk+1 − xk∥2.

(24)

Next, consider the second part (22b). Noting that ∇uLρ is
ρ-Lipschitz continuous, we have

Lρ(uk+1) ≤ Lρ(uk) + ⟨∇uLρ(uk),uk+1 − uk⟩

+
ρ

2
∥uk+1 − uk∥2.

By using the property of the projection operator,〈
Π[0,U][a]− a,b−Π[0,U][a]

〉
≥ 0 for b ∈ Π[0,U], ∀a ∈ Rm,

with a = uk − τ∇uLρ(uk), and b = uk, we get

⟨uk+1 − uk + τ∇uLρ(uk),uk − uk+1⟩ ≥ 0,

from which we have ⟨∇uLρ(uk),uk+1 − uk⟩ ≤ − 1
τ ∥uk+1 −

uk∥2. Therefore,

Lρ(xk+1,uk+1, zk,λk,µk)− Lρ(xk+1,uk, zk,λk,µk)

≤ −
(
1

τ
− ρ

2

)
∥uk+1 − uk∥2. (25)

Now consider (22c). We start by noting that

Lρ(xk+1,uk+1, zk,λk+1,µk+1)− Lρ(xk+1,uk+1, zk,λk,µk)

= ⟨λk+1 − λk, g(xk+1) + uk+1⟩︸ ︷︷ ︸
(I)

+
〈
(λk − µk)− (λk+1 − µk+1), zk

〉︸ ︷︷ ︸
(II)

− β

2
∥λk+1 − µk+1∥2 +

β

2
∥λk − µk∥2. (26)

Using the updates λk+1 = µk+1 + ρ(g(xk+1) + uk+1) and
zk = 1

α (λk−µk), and the fact that ⟨a− b,a⟩ = 1
2∥a−b∥2+

7

1
2∥a∥

2 − 1
2∥b∥

2 with a = λk − µk and b = λk+1 − µk+1,
we have

(I) =
1

2ρ
∥λk+1 − λk∥2 +

1

2ρ
∥λk+1 − µk+1∥2

− 1

2ρ
∥µk+1 − λk∥2, (27)

(II) =
1

2α
∥(λk+1 − µk+1)− (λk − µk)∥2 +

1

2α
∥λk − µk∥2

− 1

2α
∥λk+1 − µk+1∥2

=
α

2
∥zk+1 − zk∥2 +

1

2α
∥λk − µk∥2

− 1

2α
∥λk+1 − µk+1∥2. (28)

Substituting (27) and (28) into (26) yields

Lρ(xk+1,uk+1, zk,λk+1,µk+1)− Lρ(xk+1,uk+1, zk,λk,µk)

≤ 1

2ρ
∥λk+1 − λk∥2 −

1

2ρ
∥µk+1 − λk∥2 +

1

2ρ
∥λk − µk∥2

+
α

2
∥zk+1 − zk∥2

(i)

≤ 1

2ρ

(
3ρ2M2

g ∥xk+1 − xk∥2 + 3ρ2∥uk+1 − uk∥2

+3∥µk+1 − µk∥2
)

+
1

2ρ

(
2σk − σ2

k

)
∥λk − µk∥2 +

α

2
∥zk+1 − zk∥2

(ii)

≤ 1

2

(
3ρM2

g ∥xk+1 − xk∥2 + 3ρ∥uk+1 − uk∥2
)

+
1

2ρ

(
2σk + 2σ2

k

)
∥λk − µk∥2 +

α

2
∥zk+1 − zk∥2

(iii)

≤ 1

2

(
3ρM2

g ∥xk+1 − xk∥2 + 3ρ∥uk+1 − uk∥2
)

+
δ2k
4ρ

+
δk
ρ

+
α

2
∥zk+1 − zk∥2, (29)

where (i) follows from (19) and (20) in Lemma 6; (ii) follows
from (17) in Lemma 6; and (iii) is from (17) and (18) in
Lemma 6.

Lastly, we consider (22d). Write down Lρ(zk+1) =
Lρ(xk+1,uk+1, zk+1,λk+1,µk+1) for notational simplicity.
From the α-strong convexity of Lρ in z, we have

Lρ(zk) ≥ Lρ(zk+1) + ⟨∇zLρ(zk+1), zk − zk+1⟩

+
α

2
∥zk+1 − zk∥2.

Since zk+1 minimizes Lρ(xk+1,uk+1, z,λk+1,µk+1), we
have that ∇zLρ(zk+1) = 0. Thus,

Lρ(zk+1)− Lρ(zk) ≤ −α

2
∥zk+1 − zk∥2. (30)

Combining (24), (25), (29), and (30) yields the desired result.

(b) By using the update of zk+1 =
λk+1−µk+1

α , we deduce

Lρ(wk+1)

= f(xk+1) + ⟨λk+1, g(xk+1) + uk+1⟩

− 1

2ρ
∥λk+1 − µk+1∥2 +

ρ

2
∥g(xk+1) + uk+1∥2︸ ︷︷ ︸

=0

+r(xk+1)

= f(xk+1) +
1

2ρ
∥λk+1∥2 +

1

2ρ
∥λk+1 − µk+1∥2

− 1

2ρ
∥µk+1∥2 + r(xk+1) > −∞,

where the last inequality holds by the boundedness of {µk}
(Lemma 7) and the lower boundedness of f and r over dom(r)
(Assumption 5). Given the step sizes 0 < η < 1/(Lℓ + 3ρM2

g)
and 0 < τ < 1/2ρ, we already know the sequence
{Lρ(wk+1)} is approximately nonincreasing (Lemma 9(a));
Although it may not decrease monotonically at every step, it
tends to decrease over iterations. As {δk} goes to 0 as k → ∞,
{Lρ(wk+1)} converges to a finite value Lρ > −∞.

Lemma 10 (Error bound for subgradient of Lρ in primal
variables). Suppose that Assumptions 5 and 4 hold. Let
the sequence {wk := (xk,uk, zk,λk,µk)} be generated by
Algorithm 1, and let {pk := (xk,uk, zk)} be the generated
primal sequence. Then, there exists constant d1 > 0 with
ζk+1
p = (ζk+1

x , ζk+1
u ,0) ∈ ∂pLρ(wk+1) such that

∥ζk+1
p ∥ ≤ d1 (∥xk+1 − xk∥+ ∥uk+1 − uk∥) + (Mg + 1)δk,

where

d1 = max
{
Lf +BλLg + ρ(Mg + Lg(Bg +Bu) + 2M2

g)

+1/η, 2ρ(Mg + 1) + 1/τ} .

Proof. See Appendix A.

It can be easily verified that if 1
T

∑T−1
k=0 ∥ζk+1

p ∥ → 0, then
a point that satisfies stationarity in the KKT conditions (2),

0 ∈ ∇f(x∗) + ∂r(x∗) +∇g(x∗)λ∗,

is obtained. Specifically,{
0 ∈ ∇f(x) + ∂r(x) +∇g(x)λ,

0 = u−Π[0,U][u− (λ+ ρ(g(x) + u)],

⇐⇒ 0 ∈ ∇f(x) + ∂r(x) +∇g(x)λ.

We will use this part to establish primal convergence in
Theorem 11. Note that we need not consider the gradient
of Lρ with respect to λ, i.e., ξk+1

λ := ∇λLρ(wk+1), since
we know from the λ-update step (13) that ∇λLρ(wk+1) =
g(xk+1) + uk+1 − zk+1 − β(λk+1 − µk+1) = 0.

C. Main Results

Building on the preceding key properties, we establish our
main results.

Theorem 11 (Primal convergence). Under Assumptions 3-5,
let {wk} be the sequence generated by Algorithm 1. Choosing

8

η and τ satisfying the conditions of Lemma 9 and setting
δk = 1

p·kq+1 with 2/3 < q ≤ 1 and p > 0 as in (16), we have

lim
T→∞

1

T

T−1∑
k=0

∥ζk+1
p ∥2 = 0.

Proof. From Lemma 9, it follows that

c3
(
∥xk+1 − xk∥2 + ∥uk+1 − uk∥2

)
≤ Lρ(wk)− Lρ(wk+1) + δ̂k, (31)

where c3 = max{c1, c2}. Using Lemma 10 and the fact that
(a+ b+ c)2 ≤ 3(a2 + b2 + c2), we have

∥ζk+1
p ∥2 ≤ 3d21(∥xk+1 − xk∥2 + ∥uk+1 − uk∥2)

+ 3(Mg + 1)2δ2k,

which, combined with (31), yields

∥ζk+1
p ∥2 ≤ 3d21

c3

(
Lρ(wk)− Lρ(wk+1) + δ̂k

)
+ 3(Mg + 1)2δ2k.

Summing up the above over k = 0, . . . , T − 1, we obtain
T−1∑
k=0

∥ζk+1
p ∥2 ≤ 3d21

c3

(
Lρ(w0)− Lρ(wT) +

T−1∑
k=0

δ̂k

)

+ 3(Mg + 1)2
T−1∑
k=0

δ2k

Recalling that δ̂k =
δ2k
4ρ +

δk
ρ from Lemma 9(a) and Lρ(wT) ≥

Lρ > −∞, and rearranging terms, we have

1

T

T−1∑
k=0

∥ζk+1
p ∥2 ≤

3d2
1

c3

(
Lρ(w0)− Lρ

)
T

+

(
3d2

1

4ρc3
+ 3(Mg + 1)2

)∑T−1
k=0 δ2k

T

+

1
ρ

∑T−1
k=0 δk

T
. (32)

Given δk = 1
p·kq+1 with 2/3 < q ≤ 1 and p > 0, the third

term on the RHS of the above inequality dominates the second
term. Moreover, for sufficiently large T , one can easily show
that

T−1∑
k=0

δk ≈

{
p−1 log(pT) if q = 1,

(p− qp)−1T 1−q if 2
3 < q < 1.

Thus, for q = 1, the sum grows logarithmically, while for
2/3 < q < 1, the sum grows polynomially with T . Therefore,
for each choice of q, the RHS of (32) goes to 0 as T increases,
which proves that the primal sequences are convergent.

Theorem 11 shows the following ergodic primal convergence
rates hold for Algorithm 1 in terms of the running-average
stationarity (first-order optimality) residual:

1

T

T−1∑
k=0

∥ζk+1
p ∥2 =

{
O
(

log(T)
T

)
= Õ

(
1
T

)
if q = 1,

O
(

1
T q

)
if 2/3 < q < 1,

(33)

where Õ(·) denotes the rate bound that hides a logarithmic
term. Thus, a consequence of Theorem 11 is that q = 1 gives
the fastest primal convergence rate of Algorithm 1.

Corollary 12. Consider the sequence {δk} with the best
choice of q = 1 in terms of the primal convergence rate
of Algorithm 1, i.e., δk = 1

p·k+1 . For a given tolerance ϵ > 0,
the number of iterations required to reach ϵ-primal stationarity,
1
T

∑T−1
k=0 ∥ζk+1

p ∥ ≤ ϵ, is upper bounded by Õ
(
1/ϵ2

)
.

Proof. By using Jensen’s inequality,
(

1
T

∑T−1
k=0 ∥ζk+1

p ∥
)2

≤
1
T

∑T−1
k=0 ∥ζk+1

p ∥2, and taking the square root, we obtain

1

T

T−1∑
k=0

∥ζk+1
p ∥ ≤ 1√

T

√√√√T−1∑
k=0

∥ζk+1
p ∥2.

Denoting the RHS of inequality (32) by ∆T , commbiningn
Theorem 11 with the above inequality gives

1

T

T−1∑
k=0

∥ζk+1
p ∥ ≤

√
∆T√
T

≤ ϵ,

which, along with the result in (33), gives Õ
(

1√
T

)
. Therefore,

the following iterations is required to have ϵ-primal stationarity:

T :=

⌈
∆T

ϵ2

⌉
= Õ

(
1

ϵ2

)
.

Note that even with the choice of 2/3 < q < 1 for
the sequence {δk}, we can derive the complexity bound of
O
(
1/ϵ2/q

)
through a similar analysis. This is still an improved

complexity bound compared to the best-known complexity of
O
(
1/ϵ3

)
.

Remark 13. As an immediate consequence of results in
Lemma 9 and Theorem 11, we also have the result:
limT→∞

1
T

∑T
k=0

(
∥xk+1 − xk∥2 + ∥uk+1 − uk∥2

)
= 0.

This result implies the following rates of the squared running-
average successive differences of primal iterates:

1

T

T−1∑
k=0

(
∥xk+1 − xk∥2 + ∥uk+1 − uk∥2

)
=

{
O
(

log(T)
T

)
= Õ

(
1
T

)
if q = 1,

O
(

1
T q

)
if 2

3 < q < 1,

It remains to prove that limk→∞ ∥λk − µk∥ to show the
feasibility guarantees of our algorithm, which will complete
our arguement of obtaining an improved iteration complexity
among algorithms solving problem (1). This can be easily
achieved by the structural properties of Algorithm 1.

Theorem 14 (Feasibility guarantees). Under Assumptions 3-5,
let {wk} be the sequence generated by Algorithm 1. Choose
the sequence δk = 1

p·kq+1 with q = 1 and p > 0 as in (16).
Then, it holds that

lim
k→∞

∥λk − µk∥ = 0,

9

and hence, we have g(x) ≤ 0. Moreover, defining ζk+1
d :=

(ζk+1
λ , ζk+1

µ) = (0, 1
ρ (λk+1 − µk+1)) ∈ ∇dLρ(wk+1), we

have the running-average feasibility residual:

1

T

T−1∑
k=0

∥ζk+1
d ∥2 = O

(
log(T)

T

)
= Õ

(
1

T

)
. (34)

Proof. From the µ-update (12), we know that µk+1 = µ0 +∑k
t=0 σt(λt − µt). Using the fact ∥a+ b∥ ≥ ∥a∥ − ∥b∥, we

have ∥∥∥∥∥
∞∑
t=0

σt(λt − µt)

∥∥∥∥∥ ≤ ∥µk+1∥+ ∥µ0∥ < +∞, (35)

where we used the boundedness of {µk+1} (Lemma 7). The
convergence of {xk} and {uk} to (x,u), along with the
definition of λk = µk+ρ(g(xk)+uk), implies that {λk−µk}
converges to a finite value, denoted by (λ− µ).

We prove {λk − µk} → 0 by contradiction. Suppose, on
the contrary, that the sequence {λk − µk} does not converge
0, meaning there exists some e ̸= 0 such that {λk −µk} → e
as k → ∞. Given that

∑∞
k=0 σk = +∞, we see that∥∥∥∥∥

∞∑
k=0

σk(λk − µk)

∥∥∥∥∥ = +∞,

which contradicts (35). This contradiction leads to the desired
result that λ−µ = 0. With the definitions of λk+1 and uk+1,
it directly follows that

0 =
1

ρ

(
λ− µ

)
= g(x) + u and u ≥ 0.

Thus, we have the feasibility of x, i.e., g(x) ≤ 0. The above
result combined with Theorem 11, yields the remaining result
(34).

Remark 15. It is crucial to note that the above results suggest
that Algorithm 1 can reduce the infeasibility by properly
controlling the primal iterates {xk} and {uk}. Thus, our
algorithm does not require the strong regularity assumption
(RC in Table I) imposed by several AL-based algorithms
[23, 25, 27, 36] for ensuring the feasibility.

Equipped with Theorems 11 and 14, we can immediately
have the following iteration complexity for Algorithm 1.

Corollary 16 (Iteration complexity of Õ(1/ϵ2)). Under the
Assumptions and parameters required for Theorems 11 and
14, let {wk} be the sequence generated by Algorithm 1. For a
given accuracy ϵ > 0, the iteration index required to achieve
an ϵ-KKT solution is defined as

T (ϵ) = inf

{
k : max

{
1

T

T−1∑
k=0

∥ζk+1
p ∥, 1

T

T−1∑
k=0

∥ζk+1
d ∥

}
≤ ϵ

}
,

where ζk+1
p ∈ ∂pLρ(wk+1) in Theorem 11, and we define

ζk+1
d ∈ ∇dLρ(wk+1). Then, Algorithm 1 achieves an ϵ-KKT

solution to problem (1) in Õ(1/ϵ2), i.e., T (ϵ) = Õ(1/ϵ2).

V. NUMERICAL EXPERIMENTS

We conduct numerical experiments to validate the effective-
ness of our algorithm. Specifically, we evaluate our algorithm
to solve two problems: a quadratically constrained quadratic
programming (QCQP) problem and multi-class Neyman-
Pearson classification (mNPC) problem. The results support
the theoretical convergence properties of our algorithm.

A. Non-convex Quadratically Constrained Quadratic Program-
ming (QCQP)

Task formulation. Consider a non-convex QCQP problem
of the general form:

min
x∈Rn

1

2
x⊤Q0x+ c⊤0 x

s. t.
1

2
x⊤Qjx+ c⊤j x+ dj ≤ 0, j ∈ [m]

ℓi ≤ xi ≤ ui, ∀i ∈ [n],

where Q0, Qj ∈ Rn×n are symmetric, and Qj is positive
semidefinite for each j, but Q0 is indefinite. Thus the objective
is non-convex but the constraint functions are convex. Here,
r(x) = IX(x) is the indicator function for X := {x ∈ Rn :
ℓi ≤ xi ≤ ui, i ∈ [n]}. In the general case, non-convex
QCQPs capture a large class of optimization problems in
signal processing, e.g., wireless beamforming design and power
allocation with nonlinear energy model [29]. We evaluate our
method on two different problem sizes, denoted by (n×m):
(200× 10) and (1000× 10).

The baseline algorithms include the two state-of-the-art AL-
based first-order methods: NL-IAPIAL in [18] and GDPA in
[27]. As summarized in Table I, NL-IAPIAL is a double-loop
algorithm that achieves the best-known complexity of O(1/ϵ3)
for non-convex problems with convex constraints, while GDPA
is a single-loop algorithm that achieves the O(1/ϵ3) complexity
for problems with non-convex constraints.

Implementation details. The matrix Q0 is generated as
Q0 = (Q̃0 + Q̃⊤

0)/2, where the entries of Q̃0 are randomly
generated from the standard Gaussian distribution N (0, 1). To
ensure Qj to be positive definite, we set Qj = Q̃j + (∥Q̃j∥+
1) ·In×n, where In×n is n×n identity matrix and the entries of
Q̃j are also generated from the standard Gaussian. Moreover,
the vectors c0 and cj are generated randomly, and dj is a
negative value for each j. We set ℓi = −10 and ui = 10 for
all i ∈ [n]. To evaluate the performance of the algorithms,
we use the quantity ∥xk+1 −ΠX [xk+1 −∇xL(xk+1,λk+1)]∥
as the measure of stationarity residuals. For the measure of
feasibility residuals, we use 1

ρk
∥λk+1 − λk∥ for NL-IAPIAL

and GDPA, and use 1
ρ∥λk+1 − µk+1∥ for PPALA.

In each setting, we conduct 5 independent simulations. Given
that NL-IAPIAL is a double-loop algorithm, we evaluate and
compare the behaviors of the algorithms based on CPU time in
seconds. We plot averaged stationary and feasibility residuals
over CPU time in seconds.

Results and discussion. Figure 1 summarizes the numerical
performance of PPALA, GDPA and NL-IAPIAL on QCQP
problems. Figure 1(a) focuses on the problem with dimensions
n = 200 and m = 10, while Figure 1(b) examines the larger

10

(a) QCQP with n = 200 and m = 10. A fixed step-size 5× 10−4 for
PPALA, and initial step-size 10−3 for GDPA and NL-IAPIAL are used.

(b) QCQP with n = 1000 and m = 10. A fixed step-size 2× 10−5 for
PPALA and initial step-size 10−4 for GDPA and NL-IAPIAL are used.

Fig. 1. Performance comparison of PPALA with GDPA and
NL-IAPIAL on QCQP (36). All values represent the average
of 5 independent runs versus CPU time in seconds. The y-axis
represents log10 [∥xk+1 −ΠX [xk+1 −∇xL(xk+1,λk+1)]∥] and
log10 [(1/ρk)∥λk+1 − λk∥] for stationarity and feasibility, respectively.

problem with n = 1000 and m = 10. From the results, we
observe that while there is not much difference in performance
for the small-size problem (n = 200 and m = 10), PPALA
outperforms GDPA and NL-IAPIAL for the larger problem with
n = 1000 and m = 10. We also see that PPALA consistently
reduces stationarity and feasibility residuals. This is due to
the use of fixed parameters α, β > 0. On the other hand, we
observed that GDPA exhibits a high sensitivity to the update of
penalty parameters, and NL-IAPIAL needs a careful fine-tuning
for inner-loop implementation. Our algorithm shows superior
performance in terms of computational efficiency and robust-
ness, maintaining its advantage as problem size increases. This
emphasizes its effectiveness in handling functional constraints
in large-scale non-convex optimization problems.

B. Non-convex Multi-class Neyman-Pearson Classification

Task formulation. Next, we evaluate the performance of
the proposed algorithm on a non-convex multi-class Neyman-
Pearson Classification (mNPC) problem in neural network
setting. The objective of this experiment is to illustrate that our
algorithm can effectively handle highly non-convex constraints.

The mNPC model aims to minimize the loss for a particular
class of interest while controlling the losses of others within
given thresholds. Formally, consider a set of training data with
N classes of data, denoted by Di for i ∈ [N]. The objective
is to learn N nonlinear models fi. We predict the class of a
data point ξ as argmaxi∈[N]fi(xi; ξ), where xi represents the
weights of each fi. To obtain a high classification accuracy,
the value fi(xi; ξ)− fj(xj ; ξ) needs to be large for any i ̸= j
and ξ ∈ Di [12], which can be obtained by minimizing the

(a) Fashion-MNIST

(b) CIFAR10

Fig. 2. Performance comparison of PPALA and GDPA on Fashion-MNIST
and CIFAR10 datasets in terms of obtaining stationarity and feasibility. We
see that PPALA provides a consistent reduction of stationarity and feasibility
gaps that align with our theoretical expectations. In contrast, GDPA reduces
the feasibility gap at a slower rate on Fashion-MNIST and CIFAR10 in our
neural network setting.

loss 1
|Di|

∑
j ̸=i

∑
ξ∈Di

ϕ(fi(xi; ξ)− fj(xj ; ξ)). When training
these N nonlinear models, mNPC prioritizes minimizing the
loss on one class D1, while controlling the losses on others,
namely,

min
∥x∥≤θ

1

|D1|
∑
j ̸=1

∑
ξ∈D1

ϕ(f1(x1; ξ)− fj(xj ; ξ))

s. t.
1

|Di|
∑
j ̸=i

∑
ξ∈Di

ϕ(fi(xi; ξ)− fj(xj ; ξ)) ≤ κi,

where i = 2, . . . , N.
Implementation details. We use two common benchmark

datasets: Fashion-MNIST [43] and CIFAR10 [20]. In the
experiments, we employ a two-layer feed-forward neural
network with sigmoid activation for each classifier fi, and
use batch normalization with a full batch. We compare the
performance of Algorithm 1 (PPALA) with GDPA algorithm
only, since NL-IAPIAL can only handle convex constraints.
A sigmoid function ϕ(y) = 1/(1 + exp(y)) is used for the
loss function as in [27]. We take 4 classes and set θ = 1,
with κi = 1 for Fashion-MNIST and κi = 2 for CIFAR-10.3

For our algorithm, we set a fixed learning rate 10−3 for both
the Fashion-MNIST and CIFAR10 cases. The initial point x0

is randomly generated in each experiment. These numerical
experiments were conducted using an A100 GPU and were
implemented with Pytorch [32].

Results and discussion. The performance of PPALA and
GDPA are illustrated in Figure 2. We observe that PPALA
converges faster than GDPA in both cases. In particular, PPALA

3Note that the parameter settings for GDPA, as in [27, Section F in
Appendix], lead to a lack of convergence in the neural network setting,
particularly with a small value of the threshold κi and a large increase ratio
for updating the penalty parameter.

11

significantly outperforms GDPA when applied to the more
complex CIFAR-10 dataset, which supports the effectiveness of
the PPALA. Furthermore, determining suitable parameters for
PPALA was a straightforward task; α = 10 and β = 0.2 were
sufficient choices for both datasets. Note that the performance
of PPALA is insensitive to the choice of α > 0. On the other
hand, GDPA exhibits a high sensitivity to the update of its
penalty parameters. For instance, we observed that GDPA fails
to converge when a relatively large increase ratio is used to
update the penalty parameter. Thus, it is critical to carefully
select the penalty parameter to ensure GDPA’s convergence in
practice. The slow infeasibility reduction in GDPA is due to
the gradual update of its penalty parameter. In contrast, PPALA
achieves a fast and consistent reduction in infeasibility with
the fixed parameter ρ = α

1+αβ .
These results emphasize the effectiveness and robustness

of our PPALA compared to GDPA, especially in the context
of more complex datasets such as CIFAR10 and highly non-
convex constraints such as neural networks.

VI. CONCLUSIONS

In this work, we proposed a novel single-loop primal-
dual algorithm to solve non-convex functional constrained
optimization problems. We show that our method can achieves
an improved complexity bound of Õ(1/ϵ2) with performance
guarantees. The proposed method ensures a consistent reduction
in stationarity and feasibility gaps under mild conditions. The
experimental results demonstrate that our algorithm performs
better than the existing single-loop algorithm. Future research
could consider extending this simple optimization method to
solve stochastic non-convex constrained optimization problems,
which will result in a broader application domain in sigmal
processing and machine learning.

APPENDIX A
PROOF OF LEMMA 10

Proof. Writing the optimality condition for the x-update (10),
we have that for all k ≥ 0

∇xℓρ(wk)+
1

η
(xk+1 −xk)+dk+1 = 0, dk+1 ∈ ∂r(xk+1).

(36)
Using the subdifferential calculus rules, we also get

∇xℓρ(wk+1) + dk+1 ∈ ∂xLρ(wk+1). (37)

Hence, by defining the quantity

ζk+1
x := ∇xℓρ(wk+1)−∇xℓρ(wk) +

1

η
(xk − xk+1),

and using (36) and (37), we obtain ζk+1
x ∈ ∂xLρ(wk+1).

Next, define the quantity

ζk+1
u := uk+1 −Π[0,U][uk+1 − (λk+1 + ρ(g(xk+1) +uk+1)],

which is equivalent to the projected gradient of Lρ in u as a
measure of optimality for u-update:

∇̃uLρ(wk+1)

= uk+1 − argmin
v∈[0,U]

{⟨∇uLρ(wk+1),v − uk+1⟩

+(1/2)∥v − uk+1∥2
}

= uk+1 −Π[0,U][uk+1 − (λk+1 + (g(xk+1) + uk+1)].

Hence, we obtain

ζk+1
x ∈ ∂xLρ(wk+1), and ζk+1

u = ∇̃uLρ(wk+1).

From the z-update (14), it immediately follows that

∇zLρ(wk+1) = αzk+1 − (λk+1 − µk+1) = 0,

Hence, we obtain

ζk+1
p :=

ζk+1
x ∈ ∂xLρ(xk+1,uk+1, zk+1,λk+1,µk+1)

ζk+1
u = ∇̃uLρ(xk+1,uk+1, zk+1,λk+1,µk+1)
0 = ∇zLρ(xk+1,uk+1, zk+1,λk+1,µk+1)

 .

We derive upper estimates for ζk+1
x and ζk+1

u . A straight-
forward calculation yields

∥ζk+1
x ∥ ≤∥∇f(xk+1)−∇f(xk)∥+ (1/η)∥xk − xk+1∥

+ ∥∇g(xk+1)(λk+1 + ρ(g(xk+1) + uk+1)

−∇g(xk)(λk + ρ(g(xk) + uk)∥
≤(Lf + 1/η)∥xk+1 − xk∥
+ ∥∇g(xk+1)λk+1 −∇g(xk)λk+1

+∇g(xk)λk+1 −∇g(xk)λk∥ (38a)
+ ρ∥∇g(xk+1)g(xk+1)−∇g(xk)g(xk+1)

+∇g(xk)g(xk+1)−∇g(xk)g(xk)∥ (38b)
+ ρ∥∇g(xk+1)uk+1 −∇g(xk)uk+1

+∇g(xk)uk+1 −∇g(xk)uk∥, (38c)

in which (38a), (38b), and (38c) can be bounded by

(38a) ≤ BλLg∥xk+1 − xk∥+Mg∥λk+1 − λk∥
≤ BλLg∥xk+1 − xk∥+ ρM2

g ∥xk+1 − xk∥
+ ρMg∥uk+1 − uk∥+Mg∥µk+1 − µk∥

≤
(
BλLg + ρM2

g

)
∥xk+1 − xk∥

+ ρMg∥uk+1 − uk∥+Mgδk;

(38b) ≤ (ρBgLg + ρM2
g)∥xk+1 − xk∥;

(38c) ≤ ρBuLg∥xk+1 − xk∥+ ρMg∥uk+1 − uk∥.

where for bounding (38a), we used the λ-update and ∥µk+1−
µk∥ = δk

∥λk−µk∥+ 1
∥λk−µk∥

≤ δk. Hence,

∥ζk+1
x ∥

≤ (Lf + 1/η +BλLg + ρLg(Bg +Bu + 2M2
g))∥xk+1 − xk∥

+ 2ρMg∥uk+1 − uk∥+Mgδk. (40)

Next, we estimate an upper bound for the component ζu,k+1.
To simplify notation, define

ũk+1 = argmin
v∈[0,U]

{⟨∇uLρ(wk+1),v − uk+1⟩

+(1/2)∥v − uk+1∥2
}
.

12

Clearly, ∥ζu,k+1∥ = ∥uk+1− ũk+1∥. The first-order optimality
condition implies that

⟨∇uLρ(uk+1) + (ũk+1 − uk+1),u− ũk+1⟩ ≥ 0. (41)

Here, ∇uLρ(wk+1) is denoted by ∇uLρ(uk+1). Note that the
u-update (11) is equivalent to

uk+1 = argmin
u∈[0,U]

{
⟨∇uLρ(uk),u− uk⟩+

1

2τ
∥u− uk∥2

}
,

where ∇uLρ(uk) = ∇uLρ(xk+1,uk, zk,λk,µk). By the first-
order optimality condition, we have〈

∇uLρ(uk) +
1

τ
(uk+1 − uk),u− uk+1

〉
≥ 0. (42)

Combining (41) and (42), with settings u = uk+1 in (41) and
u = ũk+1 in (42), yields〈

∇uLρ(uk)−∇uLρ(uk+1) + τ−1(uk+1 − uk)

−(ũk+1 − uk+1), ũk+1 − uk+1⟩ ≥ 0,

equivalently,〈
∇uLρ(uk)−∇uLρ(uk+1) + τ−1(uk+1 − uk),

ũk+1 − uk+1⟩ ≥ ∥ũk+1 − uk+1∥2. (43)

Applying the Cauchy-Schwarz inequality yields(
∥∇uLρ(uk)−∇uLρ(uk+1)∥+ τ−1∥uk+1 − uk∥

)
·

∥ũk+1 − uk+1∥ ≥ ∥ũk+1 − uk+1∥2,

where

∥∇uLρ(uk)−∇uLρ(uk+1)∥
= ∥∇uLρ(xk+1,uk, zk,λk,µk)

−∇uLρ(xk+1,uk+1, zk+1,λk+1,µk+1)∥
≤ ∥λk + ρ(g(xk+1) + uk)− λk+1 − ρ(g(xk+1) + uk+1)∥
≤ ρ(Mg∥xk+1 − xk∥+ 2∥uk+1 − uk∥+ δk).

Therefore,

∥ζk+1
u ∥ = ∥ũk+1 − uk+1∥

≤ ρMg∥xk+1 − xk∥+
(
2ρ+ τ−1

)
∥uk+1 − uk∥+ δk.

(44)

Combining (40) and (44), we obtain

∥ζk+1
p ∥ ≤ d1(∥xk+1 − xk∥+ ∥uk+1 − uk∥) + (Mg + 1)δk,

where d1 = max{Lf+BλLg+ρ(Mg+BgLg+BuLg+2M2
g)

+ 1/η, 2ρ(Mg + 1) + 1/τ}. This inequality, combined with
ζk+1
p ∈ ∂pLρ(wk+1), yields the desired result.

REFERENCES

[1] R. Andreani, G. Haeser, M. L. Schuverdt, L. D. Secchin,
and P. J. Silva. On scaled stopping criteria for a safe-
guarded augmented lagrangian method with theoretical
guarantees. Mathematical Programming Computation,
14(1):121–146, 2022.

[2] D. P. Bertsekas. Nonlinear programming. Athena
scientific Belmont, 1999.

[3] D. P. Bertsekas. Constrained optimization and Lagrange
multiplier methods. Academic press, 2014.

[4] E. G. Birgin and J. M. Martı́nez. Practical augmented
Lagrangian methods for constrained optimization. SIAM,
2014.

[5] J. Bolte, S. Sabach, and M. Teboulle. Proximal alternating
linearized minimization or nonconvex and nonsmooth
problems. Mathematical Programming, 146(1-2):459–
494, 2014.

[6] J. Bolte, S. Sabach, and M. Teboulle. Nonconvex
Lagrangian-based optimization: monitoring schemes and
global convergence. Mathematics of Operations Research,
2018.

[7] D. Boob, Q. Deng, and G. Lan. Stochastic first-order
methods for convex and nonconvex functional constrained
optimization. Mathematical Programming, pages 1–65,
2022.

[8] R. I. Boţ, E. R. Csetnek, and D.-K. Nguyen. A proximal
minimization algorithm for structured nonconvex and
nonsmooth problems. SIAM Journal on Optimization,
29(2):1300–1328, 2019.

[9] R. I. Boţ and D.-K. Nguyen. The proximal alternating
direction method of multipliers in the nonconvex setting:
convergence analysis and rates. Mathematics of Opera-
tions Research, 2020.

[10] S. Boyd, N. Parikh, and E. Chu. Distributed optimization
and statistical learning via the alternating direction
method of multipliers. Now Publishers Inc, 2011.

[11] C. Cartis, N. I. Gould, and P. L. Toint. On the evaluation
complexity of composite function minimization with
applications to nonconvex nonlinear programming. SIAM
Journal on Optimization, 21(4):1721–1739, 2011.

[12] K. Crammer and Y. Singer. On the learnability and
design of output codes for multiclass problems. Machine
learning, 47:201–233, 2002.

[13] G. N. Grapiglia and Y.-x. Yuan. On the complexity of an
augmented lagrangian method for nonconvex optimization.
IMA Journal of Numerical Analysis, 41(2):1546–1568,
2021.

[14] G. Haeser, O. Hinder, and Y. Ye. On the behavior of
lagrange multipliers in convex and nonconvex infeasible
interior point methods. Mathematical Programming, pages
1–32, 2019.

[15] D. Hajinezhad and M. Hong. Perturbed proximal primal–
dual algorithm for nonconvex nonsmooth optimization.
Mathematical Programming, 176(1-2):207–245, 2019.

[16] M. R. Hestenes. Multiplier and gradient methods. Journal
of optimization theory and applications, 4(5):303–320,
1969.

[17] L. Huang and N. Vishnoi. Stable and fair classification.
In International Conference on Machine Learning, pages
2879–2890. PMLR, 2019.

[18] W. Kong, J. G. Melo, and R. D. Monteiro. Iteration
complexity of a proximal augmented lagrangian method
for solving nonconvex composite optimization problems
with nonlinear convex constraints. Mathematics of
Operations Research, 2022.

[19] W. Kong, J. G. Melo, and R. D. Monteiro. Iteration

13

complexity of an inner accelerated inexact proximal
augmented lagrangian method based on the classical
lagrangian function. SIAM Journal on Optimization,
33(1):181–210, 2023.

[20] A. Krizhevsky, G. Hinton, et al. Learning multiple layers
of features from tiny images. 2009.

[21] G. Lan and R. D. Monteiro. Iteration-complexity of
first-order augmented lagrangian methods for convex
programming. Mathematical Programming, 155(1-2):511–
547, 2016.

[22] G. Li and T. K. Pong. Global convergence of splitting
methods for nonconvex composite optimization. SIAM
Journal on Optimization, 25(4):2434–2460, 2015.

[23] Z. Li, P.-Y. Chen, S. Liu, S. Lu, and Y. Xu. Rate-improved
inexact augmented Lagrangian method for constrained
nonconvex optimization. In International Conference on
Artificial Intelligence and Statistics, pages 2170–2178.
PMLR, 2021.

[24] Z. Li and Y. Xu. Augmented lagrangian–based first-order
methods for convex-constrained programs with weakly
convex objective. INFORMS Journal on Optimization,
3(4):373–397, 2021.

[25] Q. Lin, R. Ma, and Y. Xu. Complexity of an inexact
proximal-point penalty method for constrained smooth
non-convex optimization. Computational Optimization
and Applications, 82(1):175–224, 2022.

[26] Y.-F. Liu, X. Liu, and S. Ma. On the nonergodic conver-
gence rate of an inexact augmented lagrangian framework
for composite convex programming. Mathematics of
Operations Research, 44(2):632–650, 2019.

[27] S. Lu. A single-loop gradient descent and perturbed
ascent algorithm for nonconvex functional constrained
optimization. In International Conference on Machine
Learning, pages 14315–14357. PMLR, 2022.

[28] Z. Lu and Z. Zhou. Iteration-complexity of first-order
augmented lagrangian methods for convex conic program-
ming. SIAM Journal on Optimization, 33(2):1159–1190,
2023.

[29] Z.-Q. Luo, W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang.
Semidefinite relaxation of quadratic optimization prob-
lems. IEEE Signal Processing Magazine, 27(3):20–34,
2010.

[30] A. S. Nemirovskij and D. B. Yudin. Problem complexity
and method efficiency in optimization. Wiley-Interscience,
1983.

[31] Y. Ouyang, Y. Chen, G. Lan, and E. Pasiliao Jr. An
accelerated linearized alternating direction method of
multipliers. SIAM Journal on Imaging Sciences, 8(1):644–
681, 2015.

[32] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

[33] M. J. Powell. A method for nonlinear constraints in
minimization problems. Optimization, pages 283–298,
1969.

[34] P. Rigollet and X. Tong. Neyman-pearson classification,

convexity and stochastic constraints. Journal of Machine
Learning Research, 2011.

[35] R. T. Rockafellar and R. J.-B. Wets. Variational analysis,
volume 317. Springer Science & Business Media, 2009.

[36] M. F. Sahin, A. Alacaoglu, F. Latorre, V. Cevher, et al. An
inexact augmented Lagrangian framework for nonconvex
optimization with nonlinear constraints. In Advances in
Neural Information Processing Systems, pages 13943–
13955, 2019.

[37] G. Scutari, F. Facchinei, and L. Lampariello. Parallel
and distributed methods for constrained nonconvex opti-
mization—part i: Theory. IEEE Transactions on Signal
Processing, 65(8):1929–1944, 2016.

[38] G. Scutari, F. Facchinei, L. Lampariello, S. Sardellitti, and
P. Song. Parallel and distributed methods for constrained
nonconvex optimization-Part II: Applications in commu-
nications and machine learning. IEEE Transactions on
Signal Processing, 65(8):1945–1960, 2016.

[39] G. Scutari, F. Facchinei, P. Song, D. P. Palomar, and J.-S.
Pang. Decomposition by partial linearization: Parallel
optimization of multi-agent systems. IEEE Transactions
on Signal Processing, 62(3):641–656, 2014.

[40] Q. Shi, M. Hong, X. Fu, and T.-H. Chang. Penalty
dual decomposition method for nonsmooth nonconvex
optimization—Part II: Applications. IEEE Transactions
on Signal Processing, 68:4242–4257, 2020.

[41] M. V. Solodov. Global convergence of an sqp method
without boundedness assumptions on any of the iterative
sequences. Mathematical programming, 118(1):1–12,
2009.

[42] K. Sun and A. Sun. Dual descent alm and admm. arXiv
preprint arXiv:2109.13214, 2021.

[43] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747, 2017.

[44] Y. Xie and S. J. Wright. Complexity of proximal
augmented Lagrangian for nonconvex optimization with
nonlinear equality constraints. Journal of Scientific
Computing, 86(3):1–30, 2021.

[45] Y. Xu. Accelerated first-order primal-dual proximal
methods for linearly constrained composite convex pro-
gramming. SIAM Journal on Optimization, 27(3):1459–
1484, 2017.

[46] Y. Xu. Iteration complexity of inexact augmented
lagrangian methods for constrained convex programming.
Mathematical Programming, 185:199–244, 2021.

[47] M. B. Zafar, I. Valera, M. Gomez-Rodriguez, and K. P.
Gummadi. Fairness constraints: A flexible approach for
fair classification. The Journal of Machine Learning
Research, 20(1):2737–2778, 2019.

[48] J. Zhang and Z.-Q. Luo. A proximal alternating direction
method of multiplier for linearly constrained nonconvex
minimization. SIAM Journal on Optimization, 30(3):2272–
2302, 2020.

[49] J. Zhang and Z.-Q. Luo. A global dual error bound
and its application to the analysis of linearly constrained
nonconvex optimization. SIAM Journal on Optimization,
32(3):2319–2346, 2022.

	Introduction
	Related Work
	Our Contributions
	Outline

	Preliminaries
	Proximal-Perturbed Augmented Lagrangian Algorithm
	Proximal-Perturbed Augmented Lagrangian
	Description of Algorithm

	Convergence Analysis
	Intermediate Inequalities and Bounds
	Key Properties of Algorithm 1
	Main Results

	Numerical Experiments
	Non-convex Quadratically Constrained Quadratic Programming (QCQP)
	Non-convex Multi-class Neyman-Pearson Classification

	Conclusions
	Appendix A: Proof of Lemma 10

