Reliability Certification of Supply Chain
Networks Under Uncertain Failures and Demand

Ashish Chandra'” and Jong Gwang Kim?

"Department of Management, College of Business, Illinois State
University, Normal, IL 61761.
2Department of Economics, Finance and Quantitative Analysis, Coles
College of Business, Kennesaw State University, Kennesaw, GA 30144.

*Corresponding author(s). E-mail(s): achand6@ilstu.edu;
Contributing authors: jkim311@kennesaw.edu;

Abstract

In the dynamic and uncertain landscape of modern supply chains, a significant
challenge for supply chain network (SCN) architects is ensuring that their designs
consistently deliver reliable performance amidst variable traffic demands and
unpredictable failures. This assurance is particularly difficult due to the expo-
nential and potentially uncountable set of scenarios that must be considered for
evaluation. In response to this challenge, we propose an optimization-theoretic
framework aimed at assessing the worst-case performance of supply chain net-
works by incorporating flexible routing strategies. By modeling network failures
and uncertain demand requirements, our methodology tackles the inherent
intractability of these certification problems and provides valid upper bounds
for the worst-case link utilization and the total unmet demand, essential met-
rics for maintaining robust network operations. We leverage optimization and
convexification techniques to optimize the SCN design under disruptions and
demand variation. Through rigorous evaluations on various supply chain network
topologies, our results demonstrate the efficacy and promise of our approach.
Our framework not only provides a systematic way to certify network perfor-
mance but also serves as a tool for supply chain architects to enhance resilience
against unforeseen disruptions. Ultimately, our research contributes to the devel-
opment of more reliable and resilient supply chains in an increasingly volatile
global environment.

Keywords: Supply Chain Network Resilience, Robust Network Design, Robust
Optimization, Reformulation Linearization Technique



1 Introduction

The efficient functioning of contemporary businesses hinges on the robustness of sup-
ply chain networks (SCNs), which facilitate the seamless flow of goods and services
from suppliers to end consumers [1]. Designing such networks to ensure consistent
performance at an acceptable cost is paramount. However, this task is fraught with
challenges due to planned maintenance and unplanned events, which can disrupt
the flow of goods [2-4]. Addressing these challenges necessitates robust strategies to
maintain continuity and efficiency, making the reliability certification of SCNs under
uncertain conditions a critical area of research. Supply chain reliability is defined as
the network’s ability to consistently meet demand requirements despite disruptions.
This reliability is closely tied to the concept of resilience, which refers to the capacity
of the supply chain to recover from unforeseen disruptions. Comprehensive reviews
on this topic highlight the importance of resilience for maintaining supply chain reli-
ability [5-8]. As SCNs become increasingly global and complex [9], the potential for
disruptions escalates, demanding robust approaches to reliability certification.

The COVID-19 pandemic starkly highlighted vulnerabilities within global supply
chains. The pandemic-induced disruptions affected production and distribution chan-
nels worldwide, underscoring the need for SCNs to be both resilient and adaptable
to rapidly changing circumstances [10-12]. Consequently, developing methodologies
for certifying the reliability of SCNs to ensure they can withstand and adapt to both
predictable and unpredictable disruptions has become urgent.

Traditional supply chain management approaches often emphasize cost minimiza-
tion and efficiency optimization under stable conditions. However, the dynamic nature
of SCNs necessitates models that account for variability and uncertainty. Addition-
ally, there is a growing recognition of the trade-offs between different supply chain
objectives, such as sustainability and resilience. While environmental sustainability is
crucial, it must not compromise the reliability and resilience of the supply chain [13].
Robust optimization has emerged as a powerful approach for addressing these chal-
lenges. For instance, Bertsimas and Thiele [14] discussed inventory control problems
using cardinality-constrained uncertainty sets. Qualitative robust strategies for miti-
gating supply chain disruptions were explored by Tang [15], while You and Grossmann
[16] integrated inventory and safety stock considerations under demand uncertainty in
their supply chain design models. Peng et al. [17] addressed single-link failures in net-
work disruptions, and Qiu and Wang [18] developed a robust optimization model for
designing a three-echelon SCN under both demand uncertainty and supply disruptions.

The complexities of ensuring SCN reliability are not unique to supply chains
but are also encountered in other domains such as electrical power networks [19],
telecommunication networks [20, 21], and medical services [22]. Recent advancements
in simulation and deep learning have further enhanced the study of network relia-
bility problems [23, 24]. Validating that an SCN can cope with a range of demand
requirements and failure scenarios is challenging due to the vast number of possible sce-
narios. For example, verifying that an SCN with links connecting suppliers to plants,
plants to warehouses, and warehouses to retailers can satisfy all demand requirements



amidst various link failures involves considering an exponentially large number of fail-
ure scenarios. This complexity is further compounded by the non-enumerable nature
of uncertain demand requirements.

Robust optimization techniques [25, 26] provide a means to estimate the worst-case
SCN performance across multiple scenarios. These bounds are particularly useful when
the network can adapt by re-routing flows as demand requirements change or failures
occur. However, certifying SCN design today often relies on extensive simulations,
which can be time-consuming and may not guarantee provable performance bounds.

Contribution of the paper: This paper proposes a formal framework for pro-
viding performance bounds on SCN design across a set of scenarios involving demand
requirements and failures. By leveraging cutting-edge techniques in non-linear opti-
mization [27], we address the NP-Hard problems associated with flexible routing
strategies. These techniques, notable for their generality, apply to a wide range of
SCN performance metrics and certification problems. Our framework not only provides
valid upper bounds for certification problems but also demonstrates tight bounds in
practical settings, such as when demand requirements are expressed as a convex com-
bination of known historical demands [28]. While our primary focus is on certifying
SCNs, the framework also facilitates the synthesis of SCN designs with performance
guarantees under uncertainty. We illustrate this by showing how our approach can
aid in augmenting link capacities while ensuring acceptable network performance. We
validate our approach using multiple SCN topologies, demonstrating how the frame-
work aids in identifying critical failure scenarios and determining optimal strategies
for augmenting link capacities to handle failures.

In conclusion, this paper addresses the urgent need for a systematic approach to the
reliability certification of SCNs under uncertain failures and demands. By integrating
robust optimization techniques and resilience principles, we provide a comprehensive
framework that helps businesses navigate the complexities of modern supply chain
management, ensuring consistent performance and resilience in the face of uncertainty.

2 Motivation

A supply chain network design consists of (i) constant parameters like the network
topology itself, which cannot be changed (or is expensive to change) across uncertain
network disruptions; and (ii) adaptive parameters, like the traffic/flow routed on the
links of the SCN, that may be chosen flexibly depending on the state of the SCN.
Our objective in this paper is to ensure that the chosen constant parameter i.e., the
SCN topology performs acceptably across a set of uncertain demand requirements and
network failures. Our approach is akin to robust optimization. In conventional robust
optimization, input parameters are defined within an uncertainty set, and the goal is
to minimize the objective function for any possible parameter within this set [25, 26].
Additionally, recourse actions can be taken based on specific parameter values. In the
context of supply chain networks, a common recourse action is to reroute flows to
manage disruptions and uncertain demand effectively. A typical set of failure scenarios
to consider is all simultaneous failure of F links [29, 30]. Demand requirements can
be outlined in various ways. A typical method is to provide a set of historical demand



data and ensure that all demands projected by standard prediction models are taken
into account [16, 31-33].

3 Robust Certification Problem

Let X denote the uncertainty set of demands or failures over which a given SCN design
must be certified. The design includes all parameters that must remain constant/in-
variant with changes in demands and the occurrence of failures. The SCNs respond to
failures, and changes in demand by rerouting flows in the best possible way to mini-
mize/maximize a given objective function. Let y denote the parameters determined by
the SCN when adapting to a scenario z € X. Formally, the SCN certification problem
may be written as:

* =max min g(zx, 1
g xegyey(m)g( ) (1)

The inner minimization captures that for any given = € X, the SCN determines y
in a manner that minimizes an objective function g(x,y) from a set of permissible
strategies Y (). The outer maximization robustly captures the worst-case performance
across the set of scenarios in X, assuming that the network adapts in the best possible
manner for each z. In our work, we focus on minimizing: (i) link utilization of the most
congested link in the SCN (referred to as the maximum link utilization hereafter), and
(i) total unmet demand, as described in Section 3.1. We refer to (1) as the robust
certification problem since it can be used to verify if a chosen SCN design meets a
desired performance objective threshold. For instance, when applied to a SCN design,
if g(x,y) models the maximum link utilization in the SCN, then ¢g* > 1 indicates that
the SCN is not sufficiently provisioned to handle all failure scenarios and changing
demands of interest.

Given scenario € X, the inner minimization problem min,cy (z) 9(Z,y) is gen-
erally easy to solve (a linear program) since the network must quickly compute y to
adapt to any network state resulting from the uncertainty set. The robust certifica-
tion problem is however challenging since X could be a continuous set or may contain
exponentially many scenarios.

3.1 Robust certification for Supply chain networks

We consider standard supply chain networks with four levels: suppliers, plants, ware-
houses, and retailers. These are also commonly referred to as four-echelon supply chain
networks [34-40]. We assume that the demands only occur at the retailers and that
there are no fixed costs at any of the facilities. These assumptions are standard in the
literature, see for reference [29, 41].

We denote a given SCN as a graph G(V, E), where V is the set of nodes, consisting
of supplier nodes (.5), plant nodes (P), warehouse nodes (W), and retailer nodes (R)
such that V. = SU P U W U R. The set of edges is represented by FE, such that
E = EspUEpw UEwgR, where Egp represents the set of directed edges connecting the
suppliers to the plants, Epy is the set of directed edges connecting the plants to the
warehouses, and Eyy r represents the set of directed edges connecting the warehouses
to the retailers. The known link capacity for (i,j) € E is given by ¢;; > 0. The
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Fig. 1: Standard four echelon supply chain network
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flows along all the links in the SCN are the decision variables and they are subject to
the maximum flow capacity constraints which we discuss in detail in the subsequent
sections (see Table 1 for the notational summary). Figure 1 shows an example of the
typical supply chain network we consider for our work. We next relate the general
robust certification formulation as described in (1) to our evaluation cases, where our
objective is to:

A1l certify a SCN design for a performance metric amidst uncertain failures.
A2 certify a SCN design for a performance metric amidst uncertain demands.

Our work illustrates the generality of our framework in terms of its ability to certify
the SCN design across various SCN performance metrics, amidst failures and uncertain
demand requirements (discrete and continuous uncertainty sets). For our evaluation
cases, we will in particular be focusing on the SCN performance metrics B1 and B2.
However, our framework applies to a wider range of applications including simulta-
neously varying demand requirements and allowing failures, other SCN metrics, and
other uncertainty sets (Section 4.4).

B1 Link utilization of the most congested link (U).
B2 Total unsatisfied demand across all the retailer (TLD).

We use the notation z = (zf,2%) € X, where x/ denotes a failure scenario and z¢
denotes a particular demand scenario. For A1, we assume that the retailer demand
requirements are known, and the certification needs to be done amidst uncertain fail-
ures 2/ € X, whereas for A2, we assume no failures occur in the SCN, and the
certification is to be done solely amidst uncertain demand requirements 2¢ € X. We
will be dropping the superscripts in #/ and z? when the context is clear. Next, in
Sections 3.1.1 and 3.1.2, we discuss the SCN performance metrics B1 and B2. We
also analyze how these metrics govern the inner minimization problem in (1) for our
evaluation Cases A1l and A2.



Notation Meaning

S,P,W,R Known set of supplier, plant, warehouse, and retailer nodes
\% Set of all nodes in the SCN. V=SUPUWUR
ses Supplier s (s - Index for suppliers)

(
(

peEP Plant p (p - Index for plants)
weWw Warehouse w (w - Index for warehouses)
reR Retailer r (r - Index for retailers)
Esp Known set of edges from supplier nodes (S) to plant nodes (P)
Epw Known set of edges from plant nodes (P) to warehouse nodes (W)
Ewr Known set of edges from warehouse nodes (W) to retailer nodes (R)
E Set of all edges in the SCN. E = Egp U Epw U EwRr
Cij Known maximum flow capacity of the link (i,j) € E
D, Known demand requirement of retailer r € R
Decision variables
Yij Amount of flow to be routed on link (i, j) € E
U Link utilization of the most congested link in the SCN
d, Demand out of D, which is left unsatisfied for retailer r € R

Table 1: List of notations

3.1.1 Supply chain networks under uncertain failures

In this section, we formulate the inner minimization problem in (1), for the Case A1,
where a given SCN is exposed to uncertain failures, and we wish to certify the SCN
design based on performance metrics B1 and B2. Here, the outer maximization in
(1) occurs over X, which is a set of uncertain failures. Let 2/ € X’ represent a failure
scenario, such that for all links (7, j) in the network, we let a:f; be a binary variable
that is 1 if link (4,5) (set of links) has failed under scenario x/, and 0 otherwise. As
xf € X captures the functional state of links in the network, hence hereafter, for Case
A1, we also refer to (i) zf as a link failure scenario, and (ii) X as the set of uncertain
link failures. Under this certification case since we do not consider variable retailer
demands, so we let D,. denote the known demand requirement of retailer r € R. We
let y denote the quantity determined by the SCN when adapting to a scenario 7. For
every link (¢, j) € E, we let y;; denote the total flow routed on link (4, j), then the link
utilization of the most congested link in the SCN i.e., metric B1 is defined as follows:

U = max U;;, where U;; = Y4 is the utilization of link (1,7) € E. (2)
(i,j)€EE Cij

Leveraging the definition of y, we formulate Constraints (3a) and (3b) to model the
flow balance for each plant node p € P, and each warehouse node w € W respectively.
In particular, they model the fact that the total flow arriving into a node 7 is equal to
the total flow leaving ¢, where i € PUW.

Z Ysp = Z Ypw Vp e P (33)

seS:(s,p)eE weW:(p,w)EE



Yo = Y. Yur Yw e W (3b)

pEP:(pw)EFE réR:(w,r)eE

For a given x/, M¢(-) in (4) seeks to minimize the metric B1 as defined in (2). Con-
straints in (4b) ensure that (i) the utilization of the link (i, j) is at most U for all the
non-failed links; and (ii) none of the failed links carry any flow. Constraints in (4c)
ensure that the net inflow to retailer » € R is equal to its demand requirement D,..

Mi(z7): min U (4a)
"y <ua - ey V(i,j) € E (4b)
Z Yor =D Yr€R (4c)
weW:(w,r)eE
U,yij >0 V(i,j) € E (4d)
(3a), (3b).

We now discuss our second performance metric B2, which captures the total unmet
demand across all retailers (TLD). For a retailer » € R, we let d, denote the non-
negative demand out of D, that is unmet, then TLD is computed as:

TLD = Z d, where d, is as defined in (6¢). (5)
TER

For a given x/, L¢(+) in (6) seeks to minimize the metric B2 as defined in (5), ensuring
that the utilization of all the links in the network is almost unity. We model this
restriction on the link utilization using Constraint (6b), which is obtained by fixing
U =1 in (4b). In Constraint (6¢), we model the unmet demand for retailer 7.

VAT

Le(z?) : 1271;1 ZdT (6a)
reER
yij < (L—al)ei V(i,j) € E (6b)
dr = Dr - Z Yuwr Vr € R (6(3)

weW:(w,r)eE

dr,yij 2 0 Vr € R, Y(i,j) € E (6d)
(3a), (3b).

If X represents the set of uncertain link failures following Case A1, then the SCN
design certification problems for metrics B1 and B2 seek to solve max,s .y M¢(z7)
and max,s ¢y Li(zf) respectively.

3.1.2 Supply chain networks under uncertain demands

In this section, we formulate the inner minimization problem in (1), for Case A2,
where a given SCN is required to satisfy uncertain retailer demand requirements, and



we wish to certify the SCN design based on performance metrics B1 and B2. Here,
the outer maximization in (1) occurs over X, which is the set of uncertain retailer
demand requirements. Let 2? € X be a demand scenario, such that for all » € R,
we let ¢ denote the demand requirement at retailer node r. Under this certification
case, we assume no failures occur in the SCN. For a given demand scenario 2%, we let
Mg (z?) represent the formulation seeking to minimize the metric B1 as defined in (2).
Similarly, we let Lq(x?) represent the formulation seeking to minimize B2 as defined
in (5), and also restricting the utilization of all links in the SCN to be almost unity.
Then, Mq(z?) and Lq(z?) can be obtained from M¢(z/) and L¢(zf) respectively by:
(i) replacing D, with z¢ for all r € R, and (ii) enforcing x{J = 0 for all (i,j) € E,
as we are only considering uncertain demands. Below we provide the formulations of
Mg (2%) and Lq(z?) for reference.

Mg(z?) : min{U | yij <Ucij ¥(i,§) € E, (4d), (3a), (3b)

y,U
Z Yor =28 Vr € R}. (7)

weW:(w,r)eE

Ld(zd) : mldn{z dT | Yij < Cij V(z,g} (S E, (Gd), (3&), (3b)
reR

Y,

d, = 2% — Z Yor V€ R}. (8)

weW:(w,r)eE

If X represents the set of uncertain retailer demand requirements following Case A2,
then the network design certification problems for the metrics B1 and B2 seek to
solve max ac y Mq(z?) and maxgac y La(x?¢) respectively.

3.2 Nonlinear Formulation

The robust certification problem in (1) has been represented in a form referred to as a
two-stage formulation (see e.g., [26, 42-44]). Here, the optimal second-stage variables
(y € Y(x)) depend on the first-stage variables (z € X'). We simplify this problem by
re-expressing it as a single-stage problem, where all the variables are determined simul-
taneously. In many robust certification problems, including ours, given £ € X, the
inner optimization problem min,cy (z) g(7, y) is a linear program in variables y € Y ()
for a fixed Z, as is seen in formulations M¢(-), L¢(+), Mq(+), and Lqg(+) from Sections
3.1.1 and 3.1.2. It is well known that every LP (referred to as a primal form) involv-
ing a minimization objective may be converted into an equivalent maximization LP
(referred to as a dual form) which achieves the same objective (assuming the dual
is feasible) [45]. The robust certification problem in (1), can then be expressed as a
single-stage formulation by, first rewriting minycy ;) g(z,y) as an equivalent maxi-
mization problem using LP duality for a given x, and then adding the constraints
x € X to the dual form to capture the uncertainty set of interest. We leverage the dual



formulations of Mg¢(+), L¢(+), Mq(+), and Lq4(-) to rewrite their corresponding SCN certi-
fication problems (in particular max,s ¢y M¢(2/), max, sy Le(27), max acx Mq(z?),
and maxgacy La(z?)) as a single-stage formulation in Sections 3.2.1 and 3.2.2.

3.2.1 1-stage formulation: Certification under uncertain failures

In this section, we construct the single-stage formulations for solving the two-stage
SCN certification problems max, s » M¢(zf) and max, sy Li(zf). For a fixed z/ € X,
we first dualize M¢(x/) and L¢(zf) to obtain their corresponding dual maximization
problems [45, 46]. We then add constraints defining X" to the obtained dual formu-
lations to capture the uncertainty set under consideration. In particular, we obtain
Ms defined in (9) and % defined in (10) as the single-stage formulations for solving
max, sy Mg(zf) and max, ¢y Li(x/) respectively.

M 1512;( Z D\, (9&)
’ r€R
Z Oéij(l — J;ij)cij S 1 (gb)
(i,j)€E
Tp < Qsp V<S,p> € Esp (9C>
ew — T S Apw V(p, w> € EPW (gd)
A — O < Qr V(w, ?"> € Bwr (96)
Q5 > 0 V(Z,j> S (Qf)
)

ol e x. (9g

The maximization in .#; and % happens over the variables (z € X, v), where X is
the failure uncertainty set and v = («,~, A, 0) are the dual variables obtained post
primal dualization. Here, we use «, 7, A, and 6 to represent the set of dual variables
{asj}ayems {ptpeps {Ar}rer, and {0y }wew respectively. We further notice that in
the single-stage formulations, the inner minimization variables (y, U, d) from (4) and
(6) are replaced by the dual variables v = (a7, A, #). Moreover, x/ is now a variable
since the certification occurs across all failure scenarios in the uncertainty set X'

Zt: max S DA = > el ) (10a)
’ reR (i,j)€E
A <1 VreR (10D)
(9¢ — 9g).

Proposition 1. If My(-), Li(-), #;, and Z; are as defined in (4), (6), (9), and (10)
respectively, then the optimal values of My and 5 are same as that obtained by solving
max,sex My(x?) and max,scx Li(z!) respectively.

Proof. Tt is well known that every minimization-linear program (referred to as the
primal problem) can be equivalently converted to a maximization-linear program
(referred to as its dual problem). Moreover, if the dual problem is feasible, then both



problems achieve the same objective value [45]. For any xz/, clearly (,v,6,)\) =
(0,0,0,0) is a feasible solution to the dual problems of M¢(z/) and Le¢(x/), see (9),
(10) for reference. Hence, the optimal values of .#; and %4 equals the values obtained
by solving max, s M¢(zf) and max, ¢y Li(z/) respectively. O

3.2.2 1-stage formulation: Certification under uncertain demands

In this section, we construct the single-stage formulations for solving the two-stage
SCN certification problems max,ac x Mq(z?) and maxgac y Lq(2?). For a fixed demand
scenario x¢, we first dualize Mq(z?) and Lg(2?), then add the constraints defining the
demand uncertainty set X. Let .#y and %3 represent the single-stage formulations
solving max ey Mg (2?) and max,ac v Lq(2?) respectively. Then, .#4 and . can also
be obtained from .#; and % respectively by: (i) replacing D, with z¢ for all r € R,
(ii) enforcing mfj = 0 for all (i,7) € E, and (iii) replacing #/ € X with the demand
uncertainty set ¢ € X. In particular, we obtain .#4 and % as follows:

M Iil;i()i({z z\, Z aijcij < 1,(9¢) - (9f), 2 € X}, (11)

r€R (i,§)EE

Ly rglgic{z I\, — Z aijci; | Ar <1Vr e R, (9c) - (9f), s X}, (12)
reR (i,7)EE
where v = (a, 7, A, ) is the set of dual variables as defined in .#; and %.
Remark 1. If My(-), Ly(:), M4, and Ly are as defined in (7), (8), (11), and (12)
respectively, then the optimal values of Mg and L4 are same as that obtained by solving
maxgacy Mg(z?) and maxgacy La(x?) respectively. O
Remark 1 follows from Proposition 1, by identifying that for any demand scenario
z¢ (a,7,0,\) = (0,0,0,0) is a feasible solution to the dual problems of Mq(z?) and
Lqa(z?). Thus, in (9)-(12) we have modeled the single-stage SCN certification problem
for performance metrics B1 and B2 amidst uncertain failures (A1) and demands
(A2). Solving these formulations is NP-hard, due to the presence of nonlinear terms
involving the product of dual variables with variables defining the uncertainty set X.

4 Making SCN Certification Problems Tractable

In Section 3.2, we constructed the single-stage formulation for the SCN certification
problem in (1). We observe that these problems are typically intractable. Given the
intractable and NP-hard nature of these certification problems, we do not solve them
to optimality but rather seek ways to obtain quick upper bounds on the true optimal
value of (1). Moreover, since our purpose in certifying a SCN design is to ensure that
the design is acceptable, an upper bound that satisfies the design criteria is sufficient.
We will be leveraging non-linear programming techniques to come up with such upper
bounds. Next, in Section 4.1, we introduce one such upper bounding approach. We
then discuss how it applies to our SCN certification cases involving uncertain failures
(A1) and demands (A2) in Sections 4.2 and 4.3 respectively.

10



4.1 Relaxing robust certification problem

Our approach relaxes the robust certification problem into a tractable linear pro-
gramming problem. This relaxation then allows us to obtain an upper bound on the
worst-case SCN performance across all scenarios in the uncertainty set X. An opti-
mization problem ¥ is a relaxation of a problem 4" if (i) every feasible solution in .4
can be mapped to a feasible solution in ., and (ii) the mapped solution’s objective
value in .4 is no better than that of its mapping in .Z. We exploit the Reformulation-
Linearization Technique (RLT) [47], which is a general approach to relax non-linear
optimization problems. The technique reformulates the non-linear problem by first
adding new constraints obtained by taking products of existing constraints and then
linearizing the resulting formulation by replacing monomials with new variables. For
instance, let us consider a non-linear optimization problem where the objective is to
maximize xy+x —y over the variables (x,y), subject to constraints (i) zy+x > 0, (ii)
8—x >0, (ili) y—2 > 0, and (iv) 5—y > 0. The RLT relaxation for the above problem
is obtained by first taking the products of pairs of constraints. For example, the prod-
uct of constraints (ii) and (iii) results in a newly derived constraint (8 —z)(y —2) > 0,
i.e., 8y — 16 — xy + 2x > 0. The product term xy is then replaced by a new variable z.
The objective function and the constraint (i) zy 4+ > 0 are also rewritten as z+z—y
and z + x > 0 respectively. The resulting problem is a linear programming problem
since it does not have product terms, however, it is a relaxation of the original non-
linear problem, in the sense that constraint (e.g., z = xy) that must be present to
accurately capture the original problem are not included in the new problem.

The formulation obtained by the above explanation represents the first step in
the hierarchy of the RLT relaxations and to go higher in the hierarchy, we multi-
ply more than two constraints and linearize the nonlinear terms as discussed above.
Going higher in the hierarchy guarantees tighter bounds, but the corresponding LPs
generated become very large (more constraints and variables are introduced), see for
reference [47, 48]. Thus, we restrict ourselves to the first level of the RLT relaxation.
Furthermore, in practice, it is often sufficient to consider a subset of the product of
constraints even in the first level of hierarchy, which keeps the complexity of the result-
ing relaxation problem manageable. In Sections 4.2 and 4.3, we apply the above RLT
relaxation technique to our SCN certification cases A1 and A2 respectively.

4.2 Relaxing certification problem under uncertain failures

In this section, we apply the RLT relaxation technique to the single-stage formulations
(9) and (10), obtained in Section 3.2.1 for certifying the SCN design against uncertain
failures. For concreteness, we consider all failure scenarios involving the simultaneous
failure of F links in the SCN, such that F = f1 + fa + f3, where f1, f2, and f3 are
the number of simultaneous links failing from the edge sets Esp, Fpw, and Ewpg
respectively (see Table 1 for reference). Similar link failure models are commonly used
in practice see for reference [20, 21, 29, 49]. To incorporate this F-simultaneous link
failure model in Section 3.2.1, we define the failure uncertainty set X for Case A1l as
described in (13), where F = f1 + fo+ f3 and £ = Esp U Epy U Eyw . We will later
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discuss how to generalize this failure model in Section 4.4.

X {x:{O,l}E : Z ZTsp = f1, Z Tpw = f2, Z 33wr=f3}-

(s,p)EEsp (p,w)EEpw (w,r)eEwR
(13)

With our numerical computations, we observed that for X defined as in (13), a sim-

ple first-level RLT relaxation of .#; and % (9, 10) does not yield a sufficiently tight

upper bound to the certification problems max;cx Mg(x) and max,cx Le(x) respec-
tively. We thus reformulate the certification problems (.#;, %) and consequently
derive constraints for the RLT relaxation, as described below.

Reformulation of the certification problem. We add variables to (4) and (6)
in a way that provides the inner minimization problems more flexibility in choosing
a solution, without changing the optimum. Adding variables to the primal prob-
lem results in additional constraints to the dual, which eventually show up in the
single-stage formulations (.#;, %) and their associated RLT relaxations. These extra
constraints and their corresponding RLT constraints help produce tighter upper
bounds for the certification problems. In particular, we reformulate M¢(x/) and L¢(z7)
using the following steps:

C1 Augment each link (i, j) € E with extra variable slack capacity a;; > 0. To model
this we replace (4b) with y;; < U(1 — x{j)cij + a;j Y(i,j) € E and (6b) with
yi; < (1— xzfj)cij + a;; Y(i,j) € E. This modification allows up to a;; of the
traffic on link (4, j) to be sent over an associated virtual link without counting it
towards its utilization. To compensate for this, we increase the total traffic that
must be routed from any node ¢ to node j by a;;. We model this in C2.

C2 Replace (3a), (3b), (4¢), and (6¢) with (14a), (14b), (14c), and (14d) respectively.

Yo vw= DY Gt Y ay Vpe P  (l4a)

seS:(s,p)eE weW:(p,w)EE seS:(s,p)eE
Z Ypw = Z Yur + Z Gpw Yw e W (14b)

peEP:(p,w)eEE réeR:(w,r)eE peEP:(p,w)EE
> =D+ > aw VreR  (l4c)

weW:(w,r)eEE weW:(w,r)eE
dr + Z (Ywr — Q) = D, VreR (14d)

weW:(w,r)eE

We will hereafter refer to the reformulations of Mg(x/) and L¢(2f) as Slack-M;(z¥)
and Slack-L¢(zf). It can be shown that Slack-M¢(x/) and Slack-L¢(zf) constructed
using C1 and C2 obtain the same optimal as the original formulations described in
(4) and (6) respectively.

Proposition 2. For a given failure scenario x = {x;j} g, consider M(z) and its
corresponding reformulation Slack-M(x). Then, given a feasible solution to either of
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the formulations, a feasible solution to the other can be constructed that has the same
objective value.

The above result follows from Proposition 4 in [21]. We further note that, given
a failure scenario x, Proposition 2, holds for L¢(x) and its corresponding reformula-
tion Slack-L¢(z). Let the reformulated primal problems Slack-M¢(-) and Slack-Lg(-)
yield Slack-.#; and Slack-%; as their respective reformulated single-stage certifications
problems, using the dualizing procedure described in Section 3.2.1. Then, Slack-.#;
and Slack-.%; are obtained as .#% in (9) and .%; in (10) respectively, with the following
additional constraints:

asp—Yp <0 Y(s,p) € Egp, (15a)
Olpy — 0, <0 V(p, w) € Epw, (15b)
Qyr — A <0 Y{(w,r) € Ewg. (15¢)

Proposition 3. Slack--#; constructed using the reformulation steps described above
achieves the same optimal value as the original certification problem .#; in (9).

Proof. The result follows since the optimal values achieved by Slack-M¢(z) and
M¢(z) are equal for all z in the failure uncertainty set using Proposition 2, and
hence max, Slack-M¢(x) = max, M¢(z). This further implies that their corresponding
single-stage formulations Slack-.#; and .#; also achieve the same optimal value. [

We further note that Proposition 3 holds for the reformulation Slack-%; and the
original certification problem .% in (10). For X defined in (13), Slack-.#; and Slack-
% represent the single-stage formulations for certifying a given SCN design under
F simultaneous link failure scenarios for metrics B1 and B2 respectively. We note
that the optimal objective values of Slack-.#; and Slack-%; are finite only under the
condition that the failure of f; links in Egp, fo links in Epw, and f3 links in Fy g
does not result in the disconnection of the given SCN. This is a condition that can be
verified in polynomial time [50]. Since these certification problems are intractable, we
derive their first-level RLT relaxations. To construct this relaxation for Slack-.#%, we
start with the Slack-.#; formulation, then:

D1 First, the binary constraints « € {0,1}/"! in (13) defining X in (9g) are linearized
to bounding constraints i.e., x;; > 0 and 1—z,; > 0 for all (¢, j) € E. We hereafter
let X, denote the set obtained from X after this linearization.

XL:{x:[O,l]lEl : Z ZTsp = f1, Z Tpw = f2, Z lewr:f?,}

(s,p)EEsP (pyw)EEPW (w,r)€EEwR
(16)

D2 Multiply the constraints defining Slack-.#; i.e., (9¢) - (9f), (15a) - (15¢) with
constraints defining X7, in (16).

D3 The constraints obtained by the above multiplications are added to the origi-
nal optimization formulation. We further observe that these constraints contain
nonlinear terms. We then relax these nonlinear product terms by replacing them
with new variables as described in Table 2.
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To complete the construction of the first-level RLT relaxation of Slack-.#, in addition
to linearizing the nonlinear terms obtained in Step D3, we also linearize the product
terms {aijx{j (i,j)ee appearing in (9b). Using a similar approach as listed in D1 -
D3, we construct the first-level RLT relaxation for Slack--%;. For this case, in Step
D2, we multiply constraints defining Slack-.%; i.e., (10b), (9¢) - (9f), (15a) - (15¢) with
constraints defining X7, in (16). Then in addition to D3, we linearized the product
terms {aijxifj (i.j)eE appearing in the objective function (10a).

New linearizing variable | Replacing For all indices
ki o X | (i,5), (k1) €E
Ykt Tp X Thy peP,(kl)eE
Ok Ow X Tg weW, (kl)eFE
ATki Ar X Tk reR, (kil)eE

Table 2: RLT - Variable description for Case A1

4.3 Relaxing certification problem under uncertain demands

In this section, we first explore a model for specifying uncertain demands and then
apply the RLT relaxation technique to the single-stage formulations (11) and (12),
obtained in Section 3.2.2, for certifying the SCN design against uncertain retailer
demands. The model we utilize to capture uncertain demands mimics scenarios where
demands can be predicted from past demand data. Let 6 = (df 07, .. "5’t”|R|) for
t € T represent the vector of known historical demand requirement for the retailers
at time £. Given a set of historical demand requirements {6'};c7, where T is a set
of time instances from the past, it is reasonable to certify the SCN design over the
convex hull of {6*};cr [51]. This ensures the certification of the SCN design across all
convex combinations of the past demand predictors. In particular, this is modeled by
having ¢ € X in Section 3.2.2, where X is defined as in (17). This set definition is
effective when the uncertain demand requirements fall into the convex hull. However,
if demands fall outside the convex hull, then one way to handle this issue is to expand
the convex hull by letting {u; }rer take values less than 0 or larger than 1.

X:{ajdzzlutcst’Zutzl,utZOVteT}. (17)

teT teT

With X defined as in (17), the SCN certification problems .#Z4 and %4 in Section 3.2.2
are intractable. This is due to the presence of nonlinear terms in the objective functions
ie., Y., Arpdt. Following the discussion in Section 4.2, from our numerical compu-
tations we observed that a first-level RLT relaxation of .#4 (11) and % (12) does not
yield a sufficiently tight upper bound to max ac y Mq(2?) and max,ac x Lq(z?) respec-
tively. We thus leverage the reformulation process stated in C1 and C2 to reformulate
Mg (z?) and Lq(z?) as follows:
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E1 Augment each link (i,j) € E with extra variable slack capacity a;; > 0. To do
this in (7) and (8), for all (i, j) € E, replace Constraints y;; < Uc;; and y;; < ¢;;
with y;; < Uc;j + a5 and y;; < ¢ + ag; respectively.

E2 In (7) and (8), replace Constraints in (3a) and (3b) with (14a) and (14b)
respectively. Also, for all » € R, replace the Constraints Z Ywr = :cf

weW:(w,r)eE
and d, = z¢ — Z Ywr With (14c) and (14d) respectively, where D, is
weW:(w,r)eE
substituted with z¢ for all » € R.

We hereafter refer to Slack-Mq(z?) and Slack-Lg(x?) to represent the reformulations

constructed for Mg (x?) and Lg(x?) respectively. Given a demand requirement scenario

2%, it can be shown that My (z?) and Slack-Mg(z¢) as well as Lq(z?) and Slack-Lg(z?)

achieve the same optimal objective values.

Let the reformulated primal problems Slack-Mg(+) and Slack-Lq(-) yield Slack-.#4 and
Slack-%, as their respective reformulated single-stage certifications problems. Then,
Slack-#4 and Slack-%y4 are obtained as .#y in (11) and %5 in (12) respectively, with
the additional constraints in (15a) - (15¢).

Remark 2. Slack-#4 and Slack-Zy constructed using the reformulation steps

described above achieves the same optimal value as the original certification problems

My and Ly respectively. O

For X defined in (17), Slack-.#4 and Slack--%; represent the single-stage formu-
lations for certifying a given SCN design under uncertain demand for metrics B1
and B2 respectively. Following the equivalence stated in Remark 2, we construct the
first-level RLT relaxations for Slack-.#4 and Slack-.%; that obtains an upper bound
to maxgae y Mg(2?) and max ac p Lg(7?) respectively. To construct the relaxation for

Slack-.#4, we start with Slack-.#4 formulation, then:

F1 Multiply the constraints defining Slack-.#4 in (11) i.e., 1 — Z@meE a;;ci; > 0,
(9¢) - (9f), (15a) - (15¢) with constraints defining X" in (17).

F2 The constraints obtained by the above multiplications are added to the origi-
nal optimization formulation. These constraints contain nonlinear product terms,
that are relaxed by introducing new variables as described in Table 3. Finally, we
also linearized the product terms appearing in the objective function Zt,r ArptoL.

Using a similar approach as described in F1 and F2, we construct the first-level RLT

relaxation of Slack--Zy. For this, in Step F1, we multiply constraints defining Slack-

ZLain (12) ie., 1 — N\ > 0Vr € R, (9¢) - (9f), (15a) - (15¢) with constraints defining

X in (17) and then follow it with Step F2.

Proposition 4. For the demand uncertainty set X defined in (17), the first-level RLT

relazations for Slack-#4 and Slack-Zy constructed above are exact i.e., they achieve

the same optimal value as obtained by solving Slack-#4 and Slack-Z4 respectively.

The result follows from [28] and the definition of X in (17).

4.4 SCN certification: Over more uncertainty sets

In Sections 4.2 and 4.3, we discussed how the robust certification problem can be used
to certify a network design across random failures and uncertain demands. We now
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New linearizing variable | Replacing For all indices
afﬁ Qi Xt (i,7) EE,teT
'Y;l:t Tp X pit peEPteT
o, Ow X pit weW,teT
pYa A X it reRteT

Table 3: RLT - Variable description for Case A2

discuss how our framework can extend to tackle SCN certification problems beyond
A1 and A2, to more uncertainty sets.

Certification amidst node failures. We have already considered an uncertain
link failure model where a total of F = f; + fo + f3 links fail simultaneously (13).
Let G, be a set of link groups such that each link group g € G is constituent of a set
of links that will fail together. For every ¢’ € G, we introduce a binary variable z,
which indicates if the link group ¢’ € G has failed or not. We use this construction to
model node failures. If V represents the set of all nodes in the SCN, then for each node
v’ € V, we define the link group g,/, consisting of all the links entering and leaving v’.
For instance, Figure 2 highlights the link group associated with node P, referred to
as gp,, consisting of edges leading into and out of P,. The SCN certification problem
for node failures is obtained by replacing the constraints defining 2f € X in Section
3.2.1 with the following constraints:

Yoy =N, al;=1-(1—2)(1 - ;) ¥(i,j) € E, (18)

veV

where z{J for all (i, j) € F and z,, for all v € V are binary variables, taking a value of 1
if the corresponding link or node fails and zero otherwise. The first constraint in (18),
models that a total of A nodes have failed in the SCN. The second constraint captures
that a link (7, 7) fails if and only if at least one group among {g;, g;} that it belongs to
fails. To eliminate the product terms in (18), the second constraint can be linearized
with the constraints xfj >z, gc{j > x;, and xf] < z; + z;. An RLT relaxation may
now be applied to this formulation as discussed in the previous sections.
Certification amidst uncertain failures and demands simultaneously. We
may desire to certify the SCN design across any combination of simultaneous uncer-
tain failures and demands. This can easily be modeled as a single-stage certification
problem by taking Slack-.#; and Slack--%; as described in Sections 4.2 and 4.3 respec-
tively, and then replacing the demand parameter D,. with variable z¢ for all r € R. We
further add constraints defining the uncertainty set x € X : {z = (2, %)}, such that
o/ and 27 belong to the sets defined by (13) and (17) respectively. An RLT relaxation
similar to the ones described in Sections 4.2 and 4.3 can then be applied to this case.

4.5 Link capacity augmentation for designing robust SCN

In this Section, we discuss how our certification framework can help design robust
SCNs. We focus our discussion on Case A1l i.e., uncertain link failures and metric
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Fig. 2: SCN under node failures - Link group for P

B1 i.e., the utilization of the most congested link in the network (U) as defined in
(2), but a similar idea would extend to other certification cases and performance
metrics as well. Given a SCN, a set of failure scenarios X satisfying (13), and a
desirable network utilization threshold value U’. We consider the problem of adding
capacities to existing links in the SCN to ensure all failure scenarios in X can be
handled with a maximum link utilization (U) satisfying U < U’, while also minimizing
the total cost of augmenting capacities. We can extend our robust certification problem
max, sy Slack-M¢(x/) as described in Section 4.2, to model this problem as follows:

i 3 e (50
yij SU'(L—al)(cij +€;) +aiy Vi, j)€E (19b)
Qij, €55 Yij = 0 V(i,j) € E (19¢)
ol ex (19d)

(14a), (14b), (14¢),

where X is the set of failure scenarios as defined in (13). For all (3, j) € E, €;; represents
the variable incremental capacity added to the link (4, j) whereas p;; > 0 is the
known parameter representing the cost per unit capacity for link (i,5). For a fixed
e and z/, we dualize the inner minimization problem in variables (y, a). This results
in (19) being equivalently written as a two-stage (min-max) formulation, whose inner
problem has variables z/ € {0, 1}!?l. Using the RLT relaxation techniques discussed
in Section 4.2, we replace this inner maximization problem with an upper-bounding
linear program (LP), which can again be dualized to upper-bound the optimal cost
of link augmentation. This provides us with an LP-based approach to conservatively
augment capacities, which results in a conservative robust SCN design.

Link capacity augmentation procedure: For a given failure scenario =/ € X, the
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link capacity augmentation problem is solved as the following linear program.

.Q%(xf):min{ S pueis | (14a),(14b),(l4c),(19b)7(190)}. (20)

Yy,a,€e
(i,j)eE

The above formulation can be extended to every link failure scenario in X as defined
n (13), by replicating the constraints in (20) for every scenario or equivalently by
solving max, sy <7 (x7). To solve max,scr & (zf), we first dualize o7 (x/) to obtain
ap(zf) as described in (21), and then equivalently solve max,scy «/p(xf). Since,
max,scx “p(zf) is a nonlinear optimization problem, with ¥ € X being a binary
variable, an RLT-relaxation for it can be constructed to obtain an upper bound for
the total cost of capacity augmentation.

dp(xf) Juax, Z ArD, — Z U'(1- a:{j)cijozij (21a)
T r€R (i,J)EE

ayU' (1= xl) < pij v(i,j) € £ (21b)

Q5 Z 0 v<l,]> ek (21(3)

(9¢), (9d), (9¢), (15a), (15b), (15¢).

In Section 5.4, we report results on this using various SCN topologies.

5 Evaluation

To demonstrate the effectiveness of our techniques, we perform numerical experiments
on four-echelon supply chain networks. Using the network metrics B1 and B2, in
Sections 5.1 and 5.3, we solve the SCN certification problems amidst F-simultaneous
link failures (13) and uncertain demands (17) respectively. Further, in Section 5.2 we
show that our approach aids in identifying scenarios from the F-simultaneous link
failure set X', that adversely affects the network performance metric under considera-
tion. Then, in Section 5.4, we show that we can augment link capacities to guarantee
a given level of SCN performance across all link failure scenarios in X (13).

We evaluate our work using the SCN topologies listed in Table 4. For each topol-
ogy T;, listed under the column labeled “T”, the corresponding entries in the columns
labeled [S], |P|, W], and |R| represent the number of supplier nodes, plant nodes, ware-
house nodes, and retailer nodes respectively in the SCN. For setting up our testing
topologies, we further assume that each directed edge: (i) from all supplier nodes to all
plant nodes, (ii) from all plant nodes to all warehouse nodes, and (iii) from all ware-
house nodes to all retailer nodes, exists with a probability p, reported in the Column
“p”. As stated in Table 1, Egp, Epw, and Ey g represent the set of edges connecting
the suppliers-plants, plants-warehouses, and warehouses-retailers respectively. Entries
corresponding to |Esp|, |[Epw|, and |Ew gr| in Table 4 represent the cardinality of these
edge sets. Further, |V| = |S|+|P|+ |W|+|R| and |E| = |Esp|+ |Epw|+ |Ewr|, rep-
resent the total number of nodes and edges in the SCN topology respectively. For each
topology, we assume the link capacities {c;;}; j)eg to be uniformly generated from the
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interval [10, 50]. To validate SCNs for performance metrics B1 and B2 under uncer-
tain failures (i.e., Case A1), we assume the retailer demand requirements {D, },cr to
be uniformly generated from the interval [20,40]. Then, the total demand requirement
across all retailers is obtained as ), _p D,, which we report in Column “T.Dem”.

T | S| | Pl | W] | R|]| |Espl,|Epwl|,|[Ewr| | [VIE[ | p | T. Dem
T, | 4 | 3 2 2 (12, 6, 4) (11,22) | 1.0 | 46.252

Ty | 6 | 5 6 4 (30, 30, 24) (21,84) | 1.0 | 117.062
Ts | 7 | 3 4 7 (21, 12, 28) (21, 61) | 1.0 | 209.220
Ty | 5 | 2 3 9 (10, 6, 27) (19,43) | 1.0 | 253.199
Ts | 9 | 10 | 12 | 8 (73, 97, 77) (39, 247) | 0.8 | 257.726
Te | 10 | 3 | 10 | 15 (17, 19, 101) (38, 137) | 0.7 | 457.088
T, | 11 | 6 9 | 17 (35, 26, 76) (43,137) | 0.5 | 493.250

Table 4: Supply chain network topologies used for evaluation

Implementation: The models were implemented in Python, and all the optimiza-
tion problems were solved using Gurobi 9.0 [52]. The computations were done on a
machine with an Intel Xeon E5-2623 CPU @3.00 GHz.

5.1 Worst-case analysis of network performance across failures

In this section, we discuss the computational results of the SCN certification problem
for metrics B1 (in Table 5) and B2 (in Table 6) under uncertain link failures as
described in Case A1l. The Column labeled “T (f1, fa, f3)” in Tables 5 and 6 denote
the SCN topology and the link failure scenario set X' (as described in (13)) under
consideration.

In Table 5, Column labeled “IP”, we report the worst case utilization of the most
congested link in the network (U), across all failure scenarios in the set X', by solv-
ing the nonlinear integer problem Slack-.#;, which is the single stage formulation for
max, s ¢y Slack-Mg(x/). We describe the construction of Slack-.# in Section 4.2. Fur-
ther, in the Column labeled “RLT”, we report the optimal values for U obtained by
solving the first-level RLT relaxation of Slack-#; constructed using the Steps D1-
D3. Testing instances where the optimal U is unbounded are denoted by * (see for
instance Ty (2,3,2), T7 (3,4,2) in Table 5). These are the instances, in which the
demand requirements at the retailer nodes are not fully satisfied.

In Table 6, the Column labeled “IP”, reports the optimal values for the worst
case total lost demand (TLD), across all failure scenarios in the set X, by solv-
ing the nonlinear integer problem Slack--%, which is the single stage formulation for
max, s ¢y Slack-L¢(zf). We describe the construction of Slack--% in Section 4.2. Fur-
ther, in the Column labeled “RLT”, we report the optimal values of TLD obtained by
solving the first-level RLT relaxation of Slack--%; constructed using the Steps D1-D3.

Computational time. From our experiments, we observe that the computational
time stays stable for solving the first-level RLT relaxation, but explodes for the IP
(Slack-.#, Slack--%%), as we increase the network size or increase the number of link
failures. Since many IP instances, did not finish even after several hours, we set a
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10-hour limit for the solver and reported the lower (LB) - upper (UB) bound for the
optimal objective value at termination. We also report the optimality gap, computed
as gap = U%_BLB x 100 for each of these IP instances, that did not converge within
10 hours of runtime (see e.g., T5 (4,3,4), T5 (5,6,5), T5 (5,7,6), and T7 (3,4,2) in
Table 6). For IP instances corresponding to T5 in Table 5, the solver did not find a
valid UB (denoted by 1) even after 10 hours (the optimality gap hence is undefined,
denoted by 1), whereas the RLT relaxations were solved in less than a minute.

Computational accuracy. Our experiments confirm that the proposed first-
level RLT relaxations provide quick overestimates to the optimal value of
max, s ¢y Slack-Mg(x/) in Table 5 and max, s ¢ y Slack-L¢(2f) in Table 6. Moreover, the
results in Tables 5 and 6, can be mutually validated to verify their accuracy and con-
sistency. For e.g., the testing instances in Table 5, with U* <1 (U* > 1), correspond
to TLD* = 0 (TLD* > 0) in Table 6. This is true since in Table 6 the optimal value
of TLD is computed ensuring U is almost one (see Constraint (6b) in Lg(-)).

T (1, /2. f3) P TP RLT | T-RLT | T-Dev% | V-Dev%
T (1,1,1) 2.084 0.21 2.084 0.13 38.10 0
T1 (2,2,1) 2.084 0.91 2.084 0.07 92.31 0
T (2,3,2) * * * * * *
T2 (1,2,1) 0.371 238.34 0.371 1.96 99.18 0
Ta (2,2,2) 0.532 21178.92 | 0.532 3.91 99.98 0
Ts (1,2,3) 0.728 7002.25 | 0.728 | 3.64 99.91 0
Tz (1,2,2) 1.682 131.51 1.682 2.08 98.42 0
Ts (1,2,3) 3.592 511.93 3.592 2.04 99.60 0
Ts (2,3,2) 3.592 5043.29 4.723 2.12 99.96 23.95
Ti (1,1,2) 2.416 11.6/ | 2579 | 0.55 95.27 6.32
T, (2,1,2) 2.746 7350 | 3110 | 0.54 98.76 11.70
Ty (1> 1, 3) * * * * * *
Ts (3,2,2) | (0.237,1,1) | 36000 | 0.237 | 32.22 - -
Ts (4,3,4) | (0.444,1,1) | 36000 | 0.444 | 27.37 - -
Ts (5,6,5) | (0.917,1,) | 96000 | 0.017 | 40.56 - -
Ts (5,7,6) | (1.920,1,1) | 36000 | 1.920 | 35.07 - -
Te (1,1,1) 1.211 212.36 1.217 61.46 71.06 0.49
Te (1,1,2) 1.917 1159.64 1.917 28.98 97.50 0
Te (1,2, 1) 1.767 862.3 | 1.767 | 38.91 95.49 0
Tg (47 3, 2) * * * * * *
T7 (2,0,1) 1.050 190.05 1.050 21.25 88.82 0
T7 (1,1,1) 1.566 188.15 1.566 37.08 80.29 0
T7 (0,2,1) 3.366 190.24 3.366 20.14 89.41 0
T7 (1,1,2) * * * * * *
T7 (3> 47 2) * * * * * *

Table 5: Solving for U™ = Slack-.#; = max Slack-M¢(z') for X as in (13)
zleX

L T_IP: CPU run-time (seconds) for getting the value of U reported in Column “IP”.
2 T-RLT: CPU run-time (seconds) for getting the value of U reported in Column “RLT”.

? T-Dev% = TIEZTRET % 100, V-Dev% = BELZIE x 100.

4 The tuple entries in Column “IP”: (LB, UB, gap).
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T (f1, f2, f3) P T-IP RLT | T-RLT | T-Dev% | V-Dev%
T, (1,1,1) 12.823 0.17 12.823 0.17 0 0
T (2,2,1) 12.823 0.66 12.823 0.19 71.21 0
T (2,3,2) 46.252 0.65 46.252 0.18 72.51 0
Ty (1,2,1) 0 8.50 0 8.13 1.35 0
T (2,2,2) 0 8.05 0 7.82 2.86 0
Ty (1,2,3) 0 9.75 0 8.09 17.39 0
Ts (1,2,2) 15.231 21.17 | 15.231 3.13 85.21 0
Ts (1,2,3) 27.115 2271 31.479 3.23 85.59 13.86
Ts (2,3,2) 27.115 §/.23 | 30.958 3.17 96.2/ 12.41
Ts (1, 1,2) 139.431 2.2] 145.053 | 1.06 52.68 3.88
T4 (2,1,2) 161.007 2.7/ 164.231 | 1.6/ 10.15 1.96
T4 (1,1,3) 139.431 2.33 148577 | 0.93 60.09 6.16
Ts (3,2,2) 0 1528.63 0 95.66 93.74 0

(0, 120.793,
Ts (4,3,4) 100%) 36000 0 52.28 - -
(0, 172.821,
Ts (5,6,5) 100%) 36000 0 35.95 - -
(16.983, 185.501, ;
Ts (5,7,6) 90.84%) 36000 | 16.983 | 49.79 - -
Te (1, 1,1) 79.538 62.07 | 81.552 | 29.39 52.65 2.47
Te (1,1,2) 79.538 1/5.23 | 83.860 | 57.91 60.13 5.15
Te (1,2,1) 118.185 132.85 | 122.061 | 27.83 79.05 3.18
Te (4,3,2) 251.784 2381.05 | 380.118 | 41.17 98.27 33.76
T7 (2,0,1) 1.660 38.28 1.660 18.15 52.59 0
T7 (1,1,1) 12.651 55.66 12.651 | 18.56 66.65 0
T7 (0,2,1) 27.682 71.28 27.682 | 13.66 66.91 0
T7 (1,1,2) 36.995 32.13 | 36.995 | 13.23 58.82 0
(86.581, 259.360,
T7 (3,4,2) 66.62%) 36000 | 258.071 | 23.76 - -

Table 6: Solving for TLD* = Slack--%; ensuring U < 1, X as in (13)

! Slack-% = max, f .y Slack-Le(z')
2 T-IP: CPU run-time (seconds) for obtaining the value of TLD reported under Column “IP”.
3 T-RLT: CPU run-time (seconds) for obtaining the value of TLD reported under Column “RLT”.

4 T-Dev% = TIETRIT 5 100, V-Dev% = BELZIE < 100.

5 The tuple entries in Column “IP”: (LB, UB, gap).

5.2 Identifying scenarios resulting in poor SCIN performance

Consider a SCN and a given acceptable threshold value o € R for the network per-
formance metric B2 i.e., the total lost demand. Let Bad-F be the set as described in
(22), where X as in (13), is the set of link failure scenarios under consideration. Then,
Bad-F identifies all failure scenarios from X which results in a total lost demand value
that is higher than p.

Bad-F = {z € & : may Slack-L(z) > g}, where X is as in (13). (22)
re

We can further extend this idea to construct the set of link failure scenarios from X,
that result in a high value for the performance metric B1. In particular, the set of all
failure scenarios from X, that cause the utilization of the most congested link in the
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SCN to exceed g =1 i.e., {z € X : max,ex Slack-M¢(z) > g}. In general, identifying
link failure scenarios from the failure uncertainty set X, that results in a poor SCN
performance (high value of U or TLD) is an NP-Hard problem. An enumerative search
is also intractable, e.g., for Tg in Table 4, a brute-force listing approach showed that
only 0.62% of all (f1, fo, f3) = (1,1,1) link failure scenarios from X defined in (23)
exceeded the total lost demand threshold value of 75 units, while only 1.24% scenarios
exceeded the total lost demand threshold value of 70 units.

To identify failure scenarios in Bad-F (22), we propose a branch and bound (B-B)
algorithm that utilizes our first-level RLT LP-relaxation of the original certification
problem, max,cx Slack-L¢(x). At each exploration step (corresponding to the tree
nodes in Figure 3) of the B-B algorithm, we fix the functionality status of a subset
of links to one (denoting dead link) or zero (denoting active link) and then solve the
first-level RLT-relaxation of the original certification problem. We further note that
at the root node i.e., at the initial step in Level 0, none of the link functionalities
are fixed. The RLT-relaxation run at a node finds an optimal z-solution (possibly
non-binary), satisfying the node’s fixed link functionality status that results in the
optimal/highest total lost demand (TLD) for the relaxation (see the numeric entries
in the tree nodes of Figure 3, denoting the highest TLD value obtained by solving the
RLT-relaxation). The link with the highest fractional failure (say (k,!l)) is considered,
and the RLT-relaxation is rerun fixing xx; as each of 0 and 1. Branches where the TLD
value does not exceed g are pruned (since these are acceptable SCN performances).
Of the remaining candidate unexplored nodes, the node with the highest TLD value
is selected for exploration. Ties are broken by picking the node at the lowest level
in the B-B tree. The process is run until an integral solution for x is found, and the
search procedure can be continued to identify multiple integral solutions for x. Figure
3, describes the B-B algorithm for topology Tg, for identifying link failure scenarios
in Bad-F, when ¢ = 75 and X captures all (f1, f2, f3) = (1,1,1) link failures defined
as follows:

X:{z{O,l}lEls Yoap=1 > mpw=1, Y xml}. (23)

(s,p)EEsP (p,w)EEPW (w,r)€EEw R

The represented state of the B-B tree in Figure 3, reveals that nodes numbered 4,
6, and 10 provide an integral solution for x, resulting in the TLD value being more
than o = 75 units, which we wished to identify. In addition, since the optimal /highest
TLD value at node 7 is less than the threshold value o = 75, so we do not explore
node 7 further. Lastly, the figure also reveals that nodes 1 and 9 are active for further
exploration to find potential failure scenarios resulting in TLD being more than p.

Identification of all integral solutions for = resulting in unsatisfactory SCN perfor-
mance (e.g., TLD > g, U > @), contributes to designing more failure resilient SCNs.
Solving 7 (x) described in (20), for each of the identified failure scenarios obtained
via the B-B algorithm, allows us to augment link capacities in a manner that permits
the SCN to achieve the desired level of performance (e.g., TLD < o, U < 9).
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Level 0 0: 81.552

Level 1

Level 2

Level 3

Level 4

10: 79.538, (sg,p1) =1

9: 81.048
(p3, we) = (wio,715) =1

Fig. 3: Algorithm: Identifying Bad-link failure scenarios

5.3 Worst-case analysis of network performance across
uncertain demands

In this section, we evaluate the effectiveness of our approach in validating SCNs for
metrics B1 (in Table 7) and B2 (in Table 8) under uncertain retailer demand require-
ments as described by Case A2. Using the definition of the set X in (17), we create
four testing instances for the demand uncertainty set X by varying T (the set of past
time instances) and {d' };e7 (the observed demands at those time instances) as follows:

1. Chose T such that |T'| = 30, 6* ~ Uniform(20,50) for all ¢ € T,

2.  Chose T such that |T'| = 40, §* ~ Uniform(40,90) for all ¢ € T,

3. Chose T such that |T'| = 50, §* ~ Uniform(300,500) for all ¢ € T,
4. Chose T such that |T| = 100, 6 ~ Uniform(350,550) for all ¢ € T.
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In Columns labeled “T(D)” in Tables 7 and 8, T - denotes the SCN topology among
{T4,...,T7} under consideration, whereas (D) - denotes the testing instance among
{1., 2., 3., 4.} used to construct the demand uncertainty set X’ (as described above).
In Table 7, Column labeled “NLP”, we report the worst case utilization of the most
congested link in the network (U), across all the demand scenarios defined by X, by
solving Slack-.#, which is the single stage formulation for max,a .y Slack-Mg(z¢). We
describe the construction of Slack-.#4 in Section 4.3. Further, in the Column labeled
“RLT”, we report the optimal values for U obtained by solving the first-level RLT
relaxation of Slack-.#y constructed using the Steps F1-F2. In Table 8, the Column
labeled “NLP” | reports the optimal values for the worst case total lost demand (TLD),
across all the demand scenarios defined by the set X', by solving Slack-%y, which is
the single stage formulation for max,ac v Slack-Lq(2?). We describe the construction
of Slack--%4 in Section 4.3. Further, in the Column labeled “RLT”, we report the
optimal values of TLD obtained by solving the first-level RLT relaxation of Slack--%4
constructed using the Steps F1-F2.

Computational time. From our experiments in Tables 7 and 8, we observe that
the computational time stays stable for solving the first-level RLT relaxation, but
may explode for the NLP. Since many NLP instances, did not finish even after several
hours, we set a 10-hour limit for the solver and reported the lower (LB) - upper (UB)
bound for the optimal objective value at termination. We also report the optimality
gap, computed as gap = U%_BLB x 100 for each of these NLP instances, that did not
converge within 10 hours of runtime (see e.g., T3(4.), T4(4.), T5(3. —4.), Ts(1.—4.),
and T7(1. —4.) in Table 7 and T7(1.) in Table 8).

Computational accuracy. Consistent with Proposition 4, the testing instances
for which the NLP converged to optimality, confirm that our proposed first-level
RLT relaxation achieves the optimal value of max ¢ Slack-Mq(z?) in Table 7 and
maxac y Slack-Lq(x?) in Table 8. Moreover, similar to Tables 5 and 6, the results in
Tables 7 and 8, can be mutually validated to verify their accuracy and consistency. For
e.g., the testing instances in Table 7, with U* < 1and U* > 1, correspond to TLD* =0
and TLD* > 0 respectively in Table 8. This is true since in Table 8, the optimal values
of TLD are computed ensuring U is almost one (see the capacity constraint in (8)).

5.4 Capacity augmentation to handle uncertain failures

Our robust certification framework guides SCN designers in how best to augment
link capacities to guarantee a given level of SCN performance (e.g., TLD < p,
U < §). As discussed in Section 4.5, for X as defined in (13), the RLT relaxation
of max,cx @p(zf) allows us to formulate the link capacity augmentation problem
as a single LP that always guarantee a conservative robust SCN design quickly. To
determine the optimal values for the variable incremental link capacities {€;;} ¢ j)er
defined in (19) and (20), we note that for a given z/ € X, {€;;}; jyer are the dual
variables for the constraints in (21b). Leveraging this fact at the optimality of the
first-level RLT relaxation of max,scy #/p(27), we determine the incremental capacity
for each link (7, j) as the dual variable for the Constraint o;;U" —U’a¥;;. < p;; (21Db),

15
where o}, linearizes a;jx;; for all (i,j) € E. Computationally, we determine these
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dual values, €;;, using the Gurobi API function GRBModel::getConstrByName()
and the Gurobi attribute .Pi (see [52] for reference).

In Table 9, we report the results for our link capacity augmentation scheme that
ensures U* < 1, amidst link failure scenarios in (13). In the Column labeled “T
(f1, f2, f3)”, we report the SCN and the link failure scenarios under consideration. The
Column labeled “Ug” reports the optimal value of U obtained via the first-level RLT
relaxation of Slack-.#; with the original link capacities {c;;}(; jyer (see Table 5). In
Column “Additional-Capacities (€)”, we report the values for {€;;}; jyep obtained as
described in the above paragraph. Then, for all (i,j) € E, the updated link capacity
cgj is obtained as c;j = ¢;j + €. Finally in the Column labeled “Up”, we provide the
upper bound on U obtained by the first-level RLT relaxation of Slack-.#; with the
updated link capacities {c};} . jjer- A value of 0.9999 in Column “Up”, shows that
the described capacity augmentation scheme indeed results in U < 1.

6 Conclusion

In this paper, we have made significant strides in the field of supply chain net-
work (SCN) design by introducing a robust optimization framework. This framework
allows SCN designers to certify whether a given design performs acceptably for cho-
sen performance measures across a set of uncertain network link failures and demand
requirements, which may be exponential and non-enumerable. Our approach has
demonstrated its practical applicability; the first-level RLT relaxation can provably
solve the robust certification problem for predicted demands and consistently provides
reliable overestimates for the cases involving failures. The empirical results demon-
strate the computational stability of our techniques and also highlight the infeasibility
of solving the certification problems using traditional ways. The insights gained from
our framework enable designers to understand SCN performance under uncertain
network disruptions, guide incremental design refinements, and identify performance-
critical sections of the SCN, thus contributing to the development of SCNs that are
robust to failures and variable demands. Furthermore, we have proposed a branch-
and-bound (B-B) algorithm that aids in identifying link failure scenarios that result in
poor SCN performance. Identifying such scenarios in advance is crucial for enhancing
the robustness of the SCN. Combined with our capacity augmentation scheme, this
B-B algorithm helps improve the overall performance of the SCN in a cost-efficient
manner. Encouraged by our initial results, we plan to explore larger supply chains
and consider SCN design more extensively in the future to build more reliable net-
works. Our work lays a solid foundation for future research and practical applications
in reliability evaluation and supply chain resilience.
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T(D) NLP T-NLP [ RLT | T-RLT | T-Dem% | V-Dev%
Ty (1.) 1.470 0.04 1.470 0.04 0 0
T1(2.) 2.674 0.04 2.674 0.03 25 0
T1(3.) 14.888 0.06 14.888 | 0.06 0 0
T1(4.) 16.384 0.48 16.384 | 0.11 77.08 0
Ta(1.) 0.324 0.12 0.324 0.08 33.33 0
T2 (2.) 0.583 0.21 0.583 0.10 52.38 0
T2 (3.) 3.245 0.25 3.245 0.12 52 0
To(4.) 3.576 0.53 3.576 0.13 7547 0
T5(1.) 0.858 11.84 0.858 0.32 97.28 0
T3(2.) 1.564 8.96 1.564 0.44 95.09 0
T5(3.) 9.074 9.76 9.074 0.55 94.36 0
T3(4.) (10'02626%0)‘292’ 36000 | 10.080 | 1.05 - -
T4(1.) 1.995 91.58 1.995 0.23 99.75 0
T4(2.) 3.876 56.46 3.876 0.33 99.42 0
T4(3.) 22.603 5953.21 | 22.603 | 0.39 99.99 0
Ty(4.) (25'23?6;6)'213’ 36000 | 25.138 | 0.80 - -
Ts(1.) 0.236 11.32 0.236 2.99 73.59 0
T5(2.) 0.427 14.15 0.427 4.90 65.37 0
Ts(3.) (2"21?7’8523%78’ 36000 2.438 4.80 - -
Ts(4.) (2.4212966?57.63)17’ 36000 2.683 | 11.04 - -
Te(1.) (1?27(;91%51’ 36000 1.267 1.78 - -
Te(2.) (2'3377’5%7'%67’ 36000 2.327 2.08 - -
. 0
Ts(3.) (13'89252”101;)‘228’ 36000 | 13.826 | 2.91 - -
Te(4.) (15'77124%'051’ 36000 15.715 6.03 - -
T7(1.) (0?215’6%./‘0(;45’ 36000 0.907 1.08 - -
T7(2.) (1'“;’?541%95’ 36000 1.636 1.32 - -
T7(3.) (9'41618511%?75’ 36000 9.468 1.63 - -
T7(4.) (10'7982’70171)‘891’ 36000 | 10.789 | 5.91 - -
. 0
Table 7: Solving for U* = Slack-.#4 = max Slack-Mg(z%), X as in (17)

zdeX

L T-NLP: CPU run-time (seconds) for getting the value of U reported in Column “NLP”.
2 T-RLT: CPU run-time (seconds) for getting the value of U reported in Column “RLT”.
3 T-Dev% = TREESTRIT 5 100, V-Dev% = BELZRER » 100.

4 The tuple entries in Column “NLP”: (LB, UB, gap).
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T(D) NLP T-NLP RLT T-RLT | T-Dev% | V-Dev%
T:(1.) | 15.689 0.20 15.689 0.11 45 0
T1(2.) | 81.009 0.21 81.009 0.13 38.10 0
T1(3.) | 876.158 0.21 876.158 0.14 33.33 0
T1(4.) | 976.158 0.45 976.158 0.31 81.11 0
T2(1.) 0 0.74 0 0.42 43.24 0
T2(2.) 0 0.84 0 0.63 25 0
T2(3.) | 1227.662 0.90 | 1227.662 | 0.71 21.11 0
Ta(4.) | 1427.662 1.5 | 1427.662 | 1.30 15.58 0
T3(1.) 0 0.59 0 0.33 44.07 0
T5(2.) | 196.281 0.95 196.281 0.43 54.74 0
T3(3.) | 2808.832 1.02 | 2808.832 | 0.47 53.92 0
T3(4.) | 3158.832 | 2.51 | 3158.832 | 0.90 64.1 0
T4(1.) | 176.621 1.03 176.621 0.22 78.65 0
T4(2.) | 510.617 1.25 510.617 0.3] 72.80 0
T4(3.) | 3835.048 1.45 | 3835.048 | 0.39 73.10 0
T4(4.) | 4285.048 | 2.75 | 4285.048 | 0.68 75.27 0
Ts5(1.) 0 4.89 0 2.49 49.08 0
T5(2.) 0 4.54 0 3.16 30.40 0
T5(3.) | 1468.591 9.12 | 1468591 | 6.48 28.95 0
Ts(4.) | 1902.422 | 29.03 | 1902.422 | 19.22 33.79 0
Te(1.) | 124.178 4.56 124.178 1.5 66.23 0
To(2.) | 616.869 6.09 616.868 1.92 68.47 0
Te(3.) | 5962.045 | 12.30 | 5962.045 | 7.70 37.40 0
Te(4.) | 6840.593 | 10.71 | 6840.593 | 4.47 58.26 0
T7(1.) (01’010';)7)2’ - 0 2.98 - -
T7(2.) | 433.561 18.6/ | 433.561 1.69 90.93 0
T(3.) | 6494.620 | 21.26 | 6494.620 | 2.12 90.03 0
T,(4.) | 7507.526 | 30.71 | 7507.526 | 5.85 80.95 0

Table 8: Solving for TLD* = Slack--%y ensuring U < 1, X in (17)

1 Slack-%4 = max_dc Slack-Ld(a:d)‘

2 T-NLP: Run-time (seconds) for obtaining the value of TLD in Column “NLP”.
3 T-RLT: Run-time (seconds) for obtaining the value of TLD in Column “RLT”.
4 T-Dev% = TNLP-TRLT 5 100, V-Dev% = BELZREE % 100.

5 The tuple entries in Column “NLP”: (LB, UB, gap).
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T (f1, f2, f3) Up Additional-Capacity () Ua

T1 (2’2,1) 2.084 E(wl,r2> = 12837 €<w2’r1> = 2.48
€{wy,ry) = 3.10

€(pzwz) = 3:96, €(py wy) = 5.71

Ty (1,2,2) | 1.682 | Cswn) =32L Clurm) =545 1 0999
€(wy,rg) = 9:53; €(uwy rg) = 6.53

0.9999

Clwgirg) = 385
loapy) = 1084, €, =15.0
Te (1,1,1) | 1.217 | Swswio) = 09T € uyy =19.78 1 5509
€(pa,wig) = 6-09; €(py,0) = 18.14
€(pg,wg) = 0.09, €(ps gy = 4.47
€(ppwa) = 16.62; €455 15y = 4.85
€(pg,ws) = 563, €(pg ) = 39.23
€lpg.ws) = 29-55, €1y gy = 5.03
Ty (0,2,1) | 3.366 | Swrre) = M9 €y py) = 11.90 1 0590

€(wo,r1a) = 1-94, €(yy rg) = 1.68
lugirg) = 6.08, €y rgy = 9.32
E(w7,1"2> = 1266, E(w7,7‘g) = 14.42
€luwgorg) = 11.42

Table 9: Capacity augmentation ensuring U < 1 for failures in X' (13)
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