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Abstract

The widespread co-existence of misspecification and weak identification in asset
pricing has led to an overstated performance of risk factors. Because the conventional
Fama and MacBeth (1973) methodology is jeopardized by misspecification and weak
identification, we infer risk premia by using a double robust Lagrange multiplier test
that remains reliable in the presence of these two empirically relevant issues. Moreover,
we show how the identification, and the resulting appropriate interpretation, of the risk
premia is governed by the relative magnitudes of the misspecification J-statistic and the
identification I.S-statistic. We revisit several prominent empirical applications and all
specifications with one to six factors from the factor zoo of Feng, Giglio, and Xiu (2020)

to emphasize the widespread occurrence of misspecification and weak identification.
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1 Introduction

Over the past decades, hundreds of risk factors have been proposed to explain the cross-
section of asset returns, making up the, so-called, zoo of factors; see, e.g., Cochrane (2011)
and Harvey, Liu, and Zhu (2016). Much of the empirical support for these factors is based on
the beta representation, where risk premia are identified by projecting expected returns on
the betas, and the betas are the factor loadings in the time-series regression of asset returns
on risk factors; see, e.g., Fama and MacBeth (FM, 1973). The resulting FM ¢-statistic on
risk premia, Hansen (1982)’s J-statistic for misspecification and the cross-sectional R?, are
widely used in the asset pricing literature to show support for proposed risk factors. The
reliability of these conventional statistics has, however, recently been brought into question
by two empirically relevant issues: misspecification and weak identification.

Up till now, misspecification has been widely acknowledged as an inherent feature of asset
pricing models; see, e.g., Gospodinov, Kan, and Robotti (2014). For the beta representation,
misspecification results in expected returns that are not fully explained by the betas of the
specified factors. Thus, pricing errors generally exist and should be taken into account when
conducting inference on risk premia. Kan, Robotti, and Shanken (KRS, 2013) therefore
propose the KRS t-test, which explicitly allows for the existence of misspecification while
the FM t-test does not. As warned by Kan, Robotti, and Shanken (2013), failure to account
for misspecification tends to enlarge the t-statistic on risk premia, leading to overstated
pricing performance of risk factors.

Weak (or no) identification, on the other hand, is driven by poor quality risk factors
or more generally, limited information contained in the data. Kan and Zhang (1999), for
example, warn that risk factors proposed in the literature could be useless factors with zero
betas. When betas are zero, risk premia are unidentified in the beta representation and
paired with misspecification, the FM t-statistic can be spuriously large to support useless
factors as shown by Kan and Zhang (1999). In addition, Kleibergen (2009) illustrates the

malfunction of the FM t-statistic caused by factors that are only weakly correlated with asset



returns and proposes robust tests to address weak identification of risk premia. Moreover,
Kleibergen and Zhan (2015, 2021) show that the cross-sectional R? and J-statistic may also
spuriously favor statistically weak factors, respectively.

Despite that misspecification and weak identification are well recognized, there is cur-
rently no unified approach for identification and inference that can deal with these empirically
relevant issues. We therefore advocate such an approach and apply it to show the widespread
occurrence of misspecification and weak identification in applied asset pricing studies.

When misspecification is present, there is no longer a (true) value of the risk premia at
which the pricing error is zero. Different estimation procedures then lead to distinct pseudo-
true values of risk premia, which are the minimizers of the population objective function
of the respective estimation procedure. We show that, in case of generic misspecification,
the difference between the pseudo-true value of two estimation procedures, i.e. the FM two-
pass approach and the continuous updating estimator (CUE) of Hansen, Heaton, and Yaron
(1996), and the baseline risk premia that would apply in case of correct specification, depends
on the strength of misspecification compared to the strength of identification. The strength
of misspecification is reflected by the population equivalent of the J-statistic, while the
strength of identification is revealed by the, so-called, identification strength (1.5) statistic.
The 1.S-statistic is a rank test statistic on the 8 matrix and is, by construction, always larger
than or equal to the J-statistic. The difference between these two measures is indicative of
whether we can interpret the pseudo-true value as a risk premium. When this difference is
small, the pseudo-true value basically results from the close to reduced rank value of the
[ matrix, so it can be far off from the baseline risk premium under correct specification,
and does not reflect a risk premium. The sample equivalents of the J and IS statistics are
therefore important in gauging whether we can interpret risk premia estimates resulting from
empirical studies as genuine risk premia of interest.

For eight prominent empirical studies in asset pricing: Fama and French (1993), Jagan-
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Etula, and Muir (2014), Kroencke (2017) and He, Kelly, and Manela (2017) and for all (14
billion+) one to six factor specifications resulting from the factor zoo of Feng, Giglio, and
Xiu (2020), we compute the J and IS statistics to illustrate the widespread co-existence
of misspecification and weak identification. The resulting J-statistics are mostly large and
significant, and if they are not, their smaller values are often induced by an accompanying
small value of the IS-statistic. The smallish J-statistic then basically results from a close
to reduced rank value of the S matrix, so the risk premia estimates do so as well and do not
reflect risk premia. When we do not incorporate the zero-£ return or use more time series
observations, these identification issues become less problematic for some settings, such as
the three-factor model from Fama and French (1993), but remain for many others.

The conventional test statistics for conducting inference on risk premia, such as the FM
two-pass t-test, also with the Shanken (1992) correction of the standard errors, and the KRS
t-test, become unreliable in the presence of misspecification and/or weak identification. We
illustrate this by showing that the limit behavior of the FM two-pass estimator consists
of four components. Two of these components are negligible in case of strong factors and
correct specification, but lead to non-standard behavior in case of misspecification and/or
weak identification. It is also not possible to correct for them by using the bootstrap.
We therefore use the double robust Lagrange multiplier (DRLM) statistic from Kleibergen
and Zhan (2021) that provenly remains reliable in case of misspecification and/or weak
identification. For ease of exposition, we conduct a small simulation experiment to illustrate
the pros and cons of these different statistics for testing hypotheses on risk premia.

We illustrate the practical usage of the DRLM test by using the influential Fama and
French (1993) three-factor model and the conditional consumption capital asset pricing model
in Lettau and Ludvigson (2001). For the Fama and French (1993) three-factor model, we
show that for commonly used data sets, such as those resulting from Lettau and Ludvigson
(2001) and Lettau, Ludvigson, and Ma (2019), identification of the risk premia can be

problematic when incorporating the zero-$ return because of the near constancy of the



[’s associated with the market return. This identification issue is alleviated when using
more time series observations or by removing the zero- return. The joint 95% confidence
set for the risk premia resulting from the DRLM test is then bounded (ellipsoid), while it
is unbounded in the direction of the risk premia on the market return when using fewer
observations and also incorporating the zero-f return. For the conditional capital asset
pricing model stemming from Lettau and Ludvigson (2001), the 95% confidence sets of the
risk premia resulting from the DRLM test are all unbounded, indicating limited information
in the data for precisely identifying the risk premia. The 95% confidence sets from the
DRLM test are, for all of these settings, fully in line with the J and 1.5 statistics. When the
J and IS statistics are relatively close, we obtain unbounded 95% confidence sets from the
DRLM test, in contrast with the bounded ones resulting from the FM two-pass and KRS
t-tests which are then unreliable. Also the CUE differs considerably from the FM two-pass
estimator in this scenario. When the J and IS statistics are substantially apart, the results
from all these procedures are, as expected, rather similar, but the 95% (projected) confidence
sets from the DRLM test are notably narrower than those from the FM two-pass and KRS
t-tests. It all shows the importance of jointly using the J and IS statistics to gauge the
identification of risk premia while using the DRLM test to conduct inference on risk premia.

Overall, our study adds to an emerging body of research that aims to bring discipline
to the zoo of factors. Harvey, Liu, and Zhu (2016), for example, propose a higher hurdle
such as a t-statistic greater than 3.0 instead of the commonly used 1.96, since they are
concerned that significant ¢-statistics documented in the existing literature could result from
data mining. Unlike Harvey, Liu, and Zhu (2016) and the follow-up work, we do not provide
new hurdles of ¢-statistics; instead, we suggest the DRLM, J and IS statistics for gauging
the quality of risk factors. Feng, Giglio, and Xiu (2020) focus on whether a proposed risk
factor adds explanatory power beyond the existing zoo of factors, so their methodology
builds on a high-dimensional set of existing factors. In contrast, our approach is suitable

for evaluating the explanatory power of each factor model individually. In order to jointly



address misspecification and no identification, Gospodinov, Kan, and Robotti (2014) propose
a model selection procedure to eliminate potentially useless factors. Unlike Gospodinov, Kan,
and Robotti (2014), our proposed DRLM test aims to infer risk premia regardless of whether
misspecification and weak identification are present.

Finally, we note that misspecification and weak identification are not limited to the
beta representation; see, e.g., Stock and Wright (2000) and Hansen and Lee (2021), who
have studied weak identification and misspecification in the generalized method of moments
framework, respectively. Given that asset pricing models are at best approximations of reality
while lots of risk factors have little explanatory power for asset returns, misspecification and
weak identification are a likely common threat to empirical asset pricing studies.

The rest of the paper is organized as follows. Section 2 starts with discussing the setup
of misspecification and the consequences it has for commonly used risk premia estimators.
It illustrates that the commonly used FM t-test is jeopardized by both misspecification and
weak identification, while the DRLM test takes both issues into account. Section 3 uses the
J and IS statistics to highlight the prevalence of misspecification and weak identification in
existing studies. Section 4 contains the empirical applications for conducting inference on

risk premia, while Section 5 concludes. Technical details are relegated to the Appendix.

2 Misspecification in the beta representation

Let R;; be the return on the ¢-th asset at time ¢, with¢ =1,..., N, and ¢t = 1,...,T". The beta

representation of expected returns models it as linear in the beta vector of factor loadings:
E(Ri,t> = 5;/\F; (1)
where \p is the K x 1 vector of risk premia, and [, is the K x 1 vector of factor loadings:

B, = var(Fy) *cov(Fy, Ryy), (2)



with F; the K x 1 vector of the specified risk factors, and K < N + 1. We can as well
represent the beta representation jointly for all assets by stacking the N equations of (1) to
get

g = E(R) = BAr, (3)

with Ry = (R4, ..., Rny)'s 8= (B4, .., Bn)"

In both (1) and its misspecification extension provided later on (i.e., Equation (6)),
identification of Ay relies on the quality of 3,. For instance, if some of the specified risk factors
are just useless noise with zero betas, then Ar is unidentified in the beta representation. This
reasoning generalizes to the full rank condition of the N x K-dimensional matrix [, i.e. for
Ar to be identified, $ needs to have full rank. In the single factor case with K = 1, this
rank condition then just requires that S should be non-zero. If the full rank condition of
is jeopardized by risk factors of poor quality, then A\r is potentially weakly identified; see,
e.g., Kan and Zhang (1999), Kleibergen (2009), and Kan, Robotti, and Shanken (2013) for
a related discussion.

Remark 1: The zero-5, \g = 0, restriction. A scalar )\ is often added to (3) so

E(Rt) = LN/\O + BAF, (4)

where ¢y is the IV x 1 vector of ones, and )\g is the, so-called, zero-beta return, or the
expected return to an asset with no exposure to priced risks. Since our interest mainly lies
in A\, we opt to focus on (3) instead of (4) for ease of exposition. This treatment is related
to the A\g = 0 restriction, so that (4) reduces to (3). The zero restriction can be achieved by
considering R; as the excess return. Our discussion on (3), however, can be straightforwardly
extended to incorporate \g. For example, the full rank condition of /5 for (3) extends to the
full rank condition of (v : ) for (4) once \g is allowed for.

Remark 2: Incorporating the zero-g return. If \j = 0 is not assumed, we can still

use (3) to focus on A\r by considering R; as the return in deviation of a reference asset. To



illustrate, let Ry = (Ryt... Rn+1.4)" be the (N + 1) x 1 vector of returns such that

E(Rt) = LN+1/\() + B)\F, (5)

where B is the (N + 1) x K-dimensional matrix of factor loadings. By subtracting the
(N + 1)-th asset return, we obtain the N x 1 vector R; : Ry = (R1t...Rnt) — iNRns1t
such that (5) implies (3), with R, = JyRy, f = JyB, and Jy = (Iy : —ty). Thus, the
full rank condition of (ty41 : B) in (5) is equivalent to the full rank condition of § in (3).
Our subsequent analysis is invariant with respect to the choice of the (N + 1)-th asset; see
Kleibergen and Zhan (2020).

Remarks 1 and 2 above show that we can focus on (3) to illustrate inference on Ap

regardless of whether a zero-3 return is incorporated or not.!

2.1 Misspecification

Under misspecification, the expected returns are not fully explained by the specified (3, so
ip # BAr. We therefore consider the correctly specified setting above as the baseline, and
introduce the pricing error € in (6) to reflect misspecification. In particular, we assume the

pricing error to be potentially of a different order of magnitude:

Up= [BAp+eé
E= 0(&)-a (6)
B= 0()-b,

'Tt is worth noting that whether )¢ should be excluded already sheds light on misspecification and
weak identification in asset pricing. On the one hand, if Ay is non-zero, then incorrectly imposing the zero
restriction leads to a misspecified condition. On the other hand, if Ay is zero, then including the redundant
intercept term in (4) potentially weakens the identification of risk premia. In particular, when there is

little cross-sectional variation in 3, including ¢ causes near-multicollinearity in (¢ B), which will further
induce the weak identification of Ap. Misspecification and weak identification are, however, more general
than whether to impose Ag = 0 or not.



where a is a normalized N-dimensional vector, so O(¢é) reflects the magnitude of misspecifi-
cation; similarly, b is a normalized N x K-dimensional matrix, so O(f3) reflects the magnitude
of identification.

The specification in (6) is without loss of generality and, for example, allows for misspec-
ification which is much smaller than the expected return resulting from the beta represen-
tation, or proportional to it which would result in case of weak identification. To capture
this, the magnitudes can be modelled to be proportional to the number of time series obser-
vations as is common in the literature on weak identification, for example, O(é) = O(T%),
O(B) = O(T), c; and cg are finite constants; see, e.g., Staiger and Stock (1997) and
Kleibergen (2009).

The misspecification is generic, so the difference from the baseline pricing error, €, lies
both in the space spanned by § and outside of it. It captures the notion of the correctly
specified setting as a baseline, on top of which there is an unstructured misspecification
component. It resembles the estimation errors which the sample moment equations add to
the population moment equations. These errors are also unstructured, and lie both in the
space spanned by ( and outside of it. The magnitude components, O(€) and O(/3), can then
further be such that the estimation errors in the sample moment equations are of the same
order of magnitude as the misspecification and identification strengths.

Next, we show that the relative magnitudes of misspecification and identification, O(é)
and O(f3), drive the identification of risk premia in the FM two-pass methodology and the
CUE. Since the misspecification J-statistic gauges O(é) while the identification IS-statistic

reflects O(B), the comparison of these two statistics plays a crucial role in our later discussion.

2.2 Population objective function and pseudo-true value
2.2.1 FM two-pass estimator

The population objective functions of different risk premia estimators are all quadratic forms

of the pricing error but weigh it differently. The population objective function of the FM
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two-pass estimator involves no weight function and is therefore just the quadratic form of

the pricing error:

Qrv(l) = (g — Bl)’(uR — Bl), (7)

having as its minimizer the, so-called, pseudo-true value of risk premia. Unlike the true
value in case of correct specification, the pseudo-true value denoted by A% ), does not set

the objective function to zero as up = SAp + €, with € # 0 :

Appy = argmingegs Qrar(l) = (8'8)"" B g (8)

Using the specification of the expected asset returns in (6), the pseudo-true value becomes:

Near = Ar + G - (WD) a, (9)
where g((?) - (U'b)~''a reflects the difference between the pseudo-true value A}y, and the

generic risk premia Ap.

The specification of the pseudo-true value (9) therefore shows that it depends on the
strength of misspecification, O(€), compared to the identification strength, O(3), unless
(b'b)~'0'a = 0 so the misspecification error is outside of the space spanned by 3. For example,
when we use the specification from the weak instrument /factor literature: O(é) = O(T%) =
O, x T, O(B) = O(T%) = Oy x T, with ¢z = c5 = —% and O,,, O, non-zero finite

constants:

e = Ar 8_5 - (b)) Wa, (10)

so depending on O, being larger or smaller than O, there can be a considerable difference

Cﬁ?
between A ), and Ap. Hence, it is important to compare the strength of misspecification
reflected by O(€) to the strength of identification reflected by O(5), in order to gauge the

difference between A ), and Ap.

Under correct specification, the pricing error is zero at the true value of risk premia,

10



and remains so when repackaging the assets. The minimizers of the population objective
functions underlying different estimators all therefore have the true value of risk premia as
their minimizer, and are all invariant to repackaging. Under the standard conditions, these
estimators are also consistent for the true value. This is no longer the case in misspecified
settings where the minimizers of the population objective functions associated with various
estimators (i.e. the pseudo-true values) differ, since there is no longer a value of risk premia
at which the population objective function is equal to zero.

Kandel and Stambaugh (1995) show that the pseudo-true value for the FM two-pass
estimator is not invariant to repackaging of the assets, while the population cross-section
generalized least squares (GLS) estimator is. The FM two-pass estimator provides a consis-
tent estimator of the pseudo-true value, which makes Kandel and Stambaugh (1995) skep-
tical about how much of interest the cross-section ordinary least squares (OLS) estimator,
or FM two-pass estimator, is under misspecification. They thus show a preference for the

cross-section GLS estimator.

Theorem 1. For A an invertible N x N matrix of weights, Aiy = ¢y with ¢y the N-
dimensional vector of ones, the FM two-pass pseudo-true value for the orginal test assets,

R;, does not equal that of the repackaged test assets, A X R;.

Proof: See the Appendix and Kandel and Stambaugh (1995).

2.2.2 Continuous updating estimator

Kandel and Stambaugh (1995)’s analysis primarily concerns the population cross-section
OLS and GLS objective functions. These population objective functions treat the expected
asset returns, pp, and B’s as known while we replace them by estimators in the sample
objective functions. When extending these population objective functions to sample ones,
an important and empirically relevant issue occurs if the proximity of the true 5’s to a reduced

rank value is comparable to its estimation error. The resulting risk premia estimators are
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then exposed to multi-collinearity issues and test statistics, like, for example, the FM two-
pass t-test and its misspecification robust extension by Kan, Robotti, and Shanken (2013),
are no longer reliable for conducting tests on the pseudo-true value of the FM two-pass
estimator. Test statistics which remain reliable for conducting tests on the pseudo-true
value do, however, exist and are based on the continuous updating estimator (CUE) of
Hansen, Heaton, and Yaron (1996). The population objective function of the CUE provides
an extension of the GLS population objective function by accounting for the estimation error

of all estimable components of the pricing error, i.e. pip and [ :

Qousll) = (i — B [Var(VT (i = B1)] (i — B1)
= HZ’;QE}I(MR — BU'Q (g — BI),

(11)

where jip = R =+ Y0 R B = 250, Ry (A0, FF)  Ry=R,~R F,=F~F,
F = %ZtT:l F,. The specification in the last line of (11) is for a setting of i.i.d. data, so
Q) =Var(R; — fF};) and Qrp =Var(F;). The GLS population objective function results if we
remove the first part of the expression on the bottom line of (11).

The CUE population objective function normalizes the pricing error, so it is invariant
under repackaging and transformations of the factors. The (normalized) sample value of the
pricing error used in (11) has unit variance, which implies that, under mild conditions (see,
e.g., Shanken (1992)), the sample CUE objective function has a non-central x? distribution

in large samples. The pseudo-true value associated with the CUE then results as

A},CUE = arg mineprx Qevp(l), (12)

which is also invariant to repackaging.
The population CUE objective function is multi-modal, and the pseudo-true value re-

sults from the smallest mode. For example, in an i.i.d. setting, it results from an eigenvalue
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problem so the number of modes equals the number of eigenvalues/characteristic roots.> To
guarantee that the characteristic root from which the pseudo-true value results, identifies
risk premia, the identification strength has to exceed the misspecification strength. These
identification properties result because the CUE population objective function is the opti-
mized function in the stepwise optimization of a generalized reduced rank objective function,
which imposes a reduced rank value on the N x (K + 1) matrix (p R ﬁ) , see Kleibergen
(2007) and Kleibergen and Zhan (2021):

QCUE(Z) = minBeRNxK QCUE(la B)

/ —1

Qeup(l,B) = |vee ((pgip) —B(1i1x [Vaf(ﬁ (ﬂ'fve‘”)lﬂ

vec | |pp:B)—B(1: Ik

. [QF}: <(MR s 5) B (z s 1K>>/Q—1 ((uR 2 ﬁ) - B (l 3 TK)ﬂ(B

where the expression on the last line is for the setting of i.i.d. data.?> The second expression
n (13), Qcue(l, B), is a normalized distance measure between the N x (K + 1) matrix
(uR : ﬁ) , which is at most of rank K + 1, and the N x (K +1) matrix B (l : IK> , which is
at most of rank K.* The sample analog of the CUE population objective function is therefore

a rank test on (u R 5). Its minimal value is the J-statistic for misspecification.

Since the pseudo-true value of the CUE results from a generic rank test on ([LR : B) ,
it does not necessarily represent risk premia when there is misspecification. Consider, for

example, a setting where the strength of misspecification, O(€), is considerably larger than

2For the setting of ii.d. data, a closed-form expression of the pseudo-true value can be provided
as resulting from the eigenvector associated with the smallest root of the characteristic polynomial
7'( é Qg}: ) —( tr B )/Q_l( tr B ) = 0 by specifying that eigenvector as c(f)\*FleUE) with ¢
a scalar.

3vec(A) is the column vectorization of a matrix A that results from stacking its columns, so vec(A4) =
(@) ...a),) for A= (ay...anm). tr(A) is the trace, or sum of its diagonal elements, of the square matrix A.

4The rank of B <Z IK> is at most K because B is an N x K matrix and (l IK> a K x (K +1) matrix,

so the ranks of both of these are at most K.
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the strength of identification, O(f), which is tiny. The minimization over (/, B) then leads
to a tiny value of B and a very large value of [ that does not reflect the generic risk premia.
This reasoning is thus also in line with (9) for the FM two-pass approach.

The above point is further illustrated in Figure 1. It shows, for a single factor setting,
the contour lines of the pseudo-true values of the FM two-pass estimator and the CUE
in deviation from the risk premium in case of correct specification, as a function of the
misspecification and identification strengths. Both for FM two-pass (left panel) and CUE
(right panel), Figure 1 shows that the pseudo-true values deviate considerably from the
baseline risk premium when the misspecification strength exceeds the identification strength.
The pseudo-true value of CUE then no longer represents a risk premium, because the closest
proximity of (u R B) from a reduced rank value results mainly from the small value of f3,
and much less so from the combination of pp and S. It is therefore important to be able to

diagnose if the pseudo-true value results from such a setting.

Figure 1: Contour lines that show the deviation of pseudo-true values of FM and CUE
from the baseline risk premium in case of correct specification as a function of the

strengths of misspecification € and identification /.
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Notes: The pseudo-true values of FM and CUE are defined in (8) and (12), respectively. The
baseline risk premium is set to 2, so the contour lines show the deviation of pseudo-true values
from 2. The parameters used for Figure 1 are calibrated to the data from Kroencke (2017). The

magnitudes of € and 3 vary from 0 to 5.
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2.3 [S-statistic versus .J-statistic

To obtain a diagnostic for interpreting the pseudo-true value as a risk premium, we use that
the CUE population objective function evaluated at the pseudo-true value equals a rank test

on (ug : B) as shown by (13), which is also the population equivalent of a J-statistic:

J = QCUE()‘;,CUE)' (14)

It is then always smaller than or equal to an appropriately specified rank test statistic

conducted on any sub-matrix of (u ' /3) . An example of a rank test on a sub-matrix of

(ug @ B) is a rank test on just 3, whose sample analog is typically used to test for the
identification of the risk premia under correct specification; see, e.g., Cragg and Donald
(1997), Kleibergen and Paap (2006) and Robin and Smith (2000). This rank test statistic is
thus always larger than or equal to the CUE objective function evaluated at the pseudo-true
value (i.e. the J-statistic in (14)), and provides a measure of the identification strength of

Ar, see Kleibergen and Zhan (2021):

15 = mindeR(K_l) Qﬁ(d)
Quld) = () [(L) @ 1n) Var (VIvee(®)) (L) @ 1v)] B(2)

= minGeRNx(K—l) Qp,?"(d7 G)

Q,,(d,G) = [Vec (5 e <d : IK_l))]/ [Var (\/Tvec(ﬁ))} - :Vec (6 —G (d : IK_l))] .

(15)

When the J misspecification measure is close to the 1.5 identification measure, the pseudo-
true value basically results from a close to reduced rank value of 3. It implies that the pseudo-
true value Aj, oy p is very large and does not represent risk premia. Hence, only when the J
misspecification measure is considerably less than the IS identification strength measure does
the pseudo-true value represent risk premia. It shows that when misspecification is present,

the identification of risk premia is no longer just reflected by the rank strength value of 3, as
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is the case under correct specification, but by the difference between a measure of the degree
of misspecification and a measure of the rank strength of 5. In case of correct specification,
the misspecification measure equals zero, so the identification then solely results from the
rank value of (3, but not so when misspecification is present. The cut-off for identification is
when the measures of misspecification and rank strength of 3 are equal in which case A is
not identified, while it can be identified as risk premia when the latter exceeds the former.
To summarize, the sample analog of the IS identification measure is a rank test statistic
on (3, while the sample analog of the minimal value of the population CUE objective function
is the J-statistic for misspecification. It is thus important to compare the [S-statistic on
£ with the J-statistic for misspecification. When using aligning specifications for the J-
statistic and the [S-statistic on 3, the former is always less than or equal to the latter.
Close values, however, indicate an issue with identifying risk premia. The estimated values
of the risk premia are then also typically very large, which sheds further doubt on whether

they can be interpreted as risk premia.’

2.4 Tests of risk premia

To conduct inference on the pseudo-true values of risk premia, it is important to have tests
that remain reliable for a wide range of values of the misspecification and identification
strengths. We show that this does not hold for the FM ¢-test and its misspecification robust
extension by Kan, Robotti, and Shanken (2013), which are size distorted when the identifi-
cation strength of risk premia is minor. We conduct a small simulation exercise to highlight
this sensitivity. Thereafter we state the double robust Lagrange multiplier (DRLM) test
from Kleibergen and Zhan (2021), which is size correct for all settings of the misspecification

and identification strengths.

°It is important to note that we cannot test for the equality of the J-test and rank test for j3, since
they involve the same estimators. For example, in case ( is of reduced rank while the expected returns,
ltp, are different from zero, the population values of these two test statistics would be the same, and the
joint sampling distribution of their estimators would be degenerate, so we cannot establish a test for their
equality.
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2.4.1 Large sample behavior of t-tests based on the FM estimator under mis-

specification and weak identification

We use a single factor setting, so K = 1, to show that the FM two-pass t-test and its
misspecification robust extension by Kan, Robotti, and Shanken (2013), for conducting
inference on the FM two-pass pseudo-true value become unreliable, when the value of the
[-matrix is close to rank deficient. For the single factor setting, a close to rank deficient
value of § implies that § is close to zero. Because of the commonality of misspecification
paired with weak identification, we construct the large sample behavior of the FM two-pass
estimator for a setting where both the ’s and the misspecification are small. We model this
using the weak factor/small 5 and misspecification assumption (6) and (10), and further

postulate that both 8 and the misspecification pp — SAp are drifting to zero at rate 1/ VT :

B=pr= \/Lfa pp — BAp = \/Lﬁ )‘},FM = A\p + (b’b)_lb’a, (16)

with b and a N-dimensional vectors of constants. The small 5 assumption (16) is common in
the weak identification literature; see, e.g., Staiger and Stock (1997), Kleibergen (2005, 2009)
and Kleibergen and Zhan (2020, 2021). It leads to the small values of the F-statistic testing
the joint significance of the 3’s that we often observe; see Kleibergen and Zhan (2015). The
small misspecification assumption further accommodates the small but significant values of

the J-statistic that are regularly seen.

Theorem 2: For i.i.d. data and under the weak [ and misspecification assumption (16),
the large sample distribution of the FM two-pass estimator, Ap = (B/B)_lﬁ,ﬂ R, consists of

four components:

NI/ Lk ) B V(b + 1) Y5
B R i o e I e o CRa T e
¥ ¥ 4
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with e = a — b(b'b) "1V q; ¥, and 94 are independent normally distributed N-dimensional
random vectors with mean zero and covariance matrices var(R;) = Q + Q3" and QQ71,
Q =Var(R, — fF;) and Qpr =Var(F}).
Proof: See the Appendix.

The four different components of the large sample behavior of the FM two-pass estimator

in Theorem 2 are characterized by:
1. The object of interest: A% ), the pseudo-true value of the FM two-pass estimator.

2. —(bfjﬁl@(?:gﬁig) : Under i.i.d. data and assumption (16), \/TB - b+ 1y and \/TﬂR -
e +bAppar +1,, 50 it shows the large sample behavior of Bp—pip)B RE%R),B , which is such that

Y (b+1p) -~ N -
—(b:%)/(bwﬂ) N(0,Q+ BQp'), since 1, is independent of 1.

3. —Apr M(#ﬁ;ﬁ% : Since the 15 elements in the numerator are positively correlated,
it creates a negative bias in the FM two-pass estimator for small values of b. It also
implies that the large sample distribution of the FM two-pass estimator is not a normal
one for such values of b. When 0 is much larger than 15, so we are in a setting of sizeable
’s, 15 becomes negligible compared to b in the (b+v4) elements. This is the setting
covered by Shanken (1992), who provides the correction for the standard errors of

the FM two-pass estimator to incorporate the contribution of this component for the

variance of the FM two-pass estimator.

4 e'Yg .
To(b+g) (b+yg)

because of misspecification. When e = 0 or the identification strength, b'b, is much

It appears in the large sample distribution of the FM two-pass estimator

larger than the length of e, or the amount of misspecification, it has little effect on the
large sample distribution of the FM two-pass estimator. Because of the dependence
between the 15 elements in the numerator and denominator, this component only has
a normal distribution for large values of b, so 15 becomes negligible in the (b + 15)
elements. This is the setting covered by Kan, Robotti, and Shanken (2013), who

provide a correction of the standard errors to incorporate this component.
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The third and fourth components lead to a large sample distribution for the FM two-pass
estimator which is not a normal one for the empirically relevant setting of small values of b.
Test statistics based on the FM two-pass estimator, like the FM t¢-test and the KRS t-test,
therefore become size distorted for such small values. To illustrate this, Figure 2 shows the
simulated rejection frequencies of 5% significance FM and KRS ¢-tests on Ay py, for a range
of values of the misspecification and identification strengths.’ Figure 2.1 shows the rejection
frequencies for Hy : AL p), = 0, and Figure 2.2 is for A, corresponding with the values

resulting from Figure 1.

Figure 2: Rejection frequencies of 5% significance FM and KRS t-tests

for varying identification strengths # and misspecification é.
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Figure 2.2: Hy : A\j gy, results from Figure 1

6Throughout the paper, simulated data are generated from the linear factor model using parameters
calibrated to the data from Kroencke (2017).
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Figure 2.1 shows that the FM ¢-test and the KRS ¢-test are conservative or correctly sized
when testing Hy : Ai pp; = 0 and there is no misspecification so € = 0. For increasing values
of €, however, the FM t-test and the KRS t-test over-reject for small values of 3, i.e. the
rejection frequencies are larger than the nominal 5%. For the FM ¢-test, this over-rejection
also extends to larger values of f3.

For testing Hy : A oy, corresponding with the pseudo-true values resulting from Figure 1,
Figure 2.2 shows that the FM t-test and the KRS t-test severely over-reject for small values
of # which are less than . When 3 approaches zero, the rejection frequencies are even equal

to one, which is in line with Kan and Zhang (1999).

2.4.2 The DRLM test which remains size correct under misspecification and

weak identification

The decomposition in Theorem 2 can also be conducted for the GLS risk premia estimator,
so test statistics based on it, such as the GLS t-test, become similarly size distorted. We
therefore use a statistic based on the CUE: the DRLM statistic proposed in Kleibergen
and Zhan (2021), whose asymptotic distribution is bounded by the y% distribution. When
using appropriate critical values from the Y% distribution, the DRLM test of hypotheses
specified on the pseudo-true value of the CUE remains size correct for general levels of
misspecification and identification. In the Appendix, we state the DRLM statistic, and
provide a brief discussion of its implementation.
Figure 3 presents the rejection frequencies of a 5% significance DRLM test of Hy :
rove = 0. We note that, unlike the large sample distributions of the FM and KRS t-
tests, the limiting distributions of the statistics underlying the DRLM test do not depend on
the tested parameter or the covariance matrices €2 and Qpp. In contrast with Figure 2 for
the simulated sizes of the FM and KRS t-tests, Figure 3 shows that the DRLM test is size
correct (i.e. the rejection frequencies do not exceed the nominal 5%), and is conservative for

combined small identification and misspecification strengths.
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Figure 3: Rejection frequencies of the 5% significance DRLM test of Hy : A g = 0

for varying identification strengths S and misspecification é.

o
0 0.5

2.5 Power comparison

We briefly illustrate the power of the FM and KRS ¢-tests compared to the DRLM test. A
more extensive power study of the DRLM test is conducted in Kleibergen and Zhan (2021).
We first show the power for a correct specification, so all the aforementioned tests target the
same value of the risk premium, while there is also strong identification. Thus, we have the
ideal setting that f is sizeable while ¢ = 0 in the data generation process. All the examined
tests are therefore size correct in Figure 4a-b at the hypothesized value, i.e. all the rejection
frequencies are near the nominal level of 5% when the distance to the tested risk premium is
zero. Since there is no misspecification, the power curves of FM ¢ (dotted black) and KRS ¢
(dashed green) largely overlap in Figure 4a. The comparison of Figure 4a and 4b, however,
also shows that the DRLM test can have more power than FM and KRS ¢-tests. This results
since the DRLM test is based on the GLS framework, while the FM and KRS t¢-tests for
Figure 4 are based on OLS.
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Figure 4: Power comparison of FM, KRS t-tests and DRLM at the 5% level.

a-b: Correct specification, strong identification; c-d: Misspecification, weak identification.
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In contrast with Figure 4a-b, we allow for misspecification as well as weak identification in
Figure 4c-d. This is achieved by considering smallish 5 and nonzero € in the data generation
process. For this scenario, Figure 4c shows that the FM and KRS t-tests are no longer size
correct, while their power curves substantially differ from those in Figure 4a. In contrast,
the DRLM test, which involves the power improvement rule mentioned in the Appendix,
remains size correct in Figure 4d.

Overall, Figure 4 illustrates that it is appealing to use the DRLM test for conducting

inference on risk premia. In contrast, the conventional FM t-test, together with the KRS
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t-test, is jeopardized by joint misspecification and weak identification, both of which are

prevalent in empirical studies as we show next.

3 Diagnostic statistics

Before we turn to empirical applications of the tests on the risk premia, we first apply the
diagnostic statistics which help to gauge whether we can interpret the risk premia accordingly.
The IS-statistic, which tests for a reduced rank value of (3, is commonly used to test for
identification of the risk premia in correctly specified settings. In misspecified settings, it is,
however, no longer just the IS-statistic which governs the identification and interpretation
of the pseudo-true value of the risk premia, but its difference with the .J-statistic, which
equals the minimal value of the sample CUE objective function. This is, for example, shown
by the deviation of the FM two-pass pseudo-true value in (9) from its counterpart under
correct specification, and further illustrated in Figure 1. The J and IS statistics have well
established limiting distributions under their hypotheses of interest, which are x3,_j for the
J-statistic under correct specification, and x3_,_; for the I S-statistic under a reduced rank
[ matrix; see the Appendix for their explicit expressions. We are, however, mainly interested
in these statistics because of the inequality between them, J-statistic < IS-statistic, and
because a close proximity between these two statistics shows that the pseudo-true value does
not identify risk premia as discussed in Section 2. We therefore compute these two statistics
first for eight well known specifications of the linear asset pricing model, and second for the

specifications resulting from the factor zoo of Feng, Giglio, and Xiu (2020).

3.1 Empirical identification of risk premia

Figure 5 shows a scatter plot of the J and [.5 statistics for eight well known specifications
of the linear asset pricing model: Fama and French (1993), Jagannathan and Wang (1996),
Yogo (2006), Lettau and Ludvigson (2001), Savov (2011), Adrian, Etula, and Muir (2014),
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Kroencke (2017) and He, Kelly, and Manela (2017).” In line with common practice, we
incorporate the zero-f return, )y, while the factors used in the eight different specifications

are:

1. Fama and French (1993), the prominent three, so-called Fama-French, factors: the
market return R,,,, SMB (small minus big), and HML (high minus low). We use the
quarterly data from Lettau, Ludvigson, and Ma (2019) over 1963Q3 to 2013Q4, so
T = 202, for the three factors, and the twenty-five size and book-to-market sorted

portfolios as test assets.

2. Jagannathan and Wang (1996), three factors: R,,, corporate bond yield spread, and per
capita labor income growth. We use their monthly data from July 1963 to December
1990 so T' = 330, while one hundred size and beta sorted portfolios are used as test

assets.

3. Yogo (2006), three factors: R,,, durable and nondurable consumption growth. The
sample period is from 1951Q1 to 2001Q4 so T' = 204, with twenty-five size and book-

to-market sorted portfolios as test assets.

4. Lettau and Ludvigson (2001), three factors: consumption-wealth ratio, consumption
growth, and their interaction. We use the quarterly data from 1963Q3 to 1998Q3 so

T = 141, while the test assets are the twenty-five Fama-French portfolios.

5. Savov (2011), one factor: garbage growth. We use the same annual data, 1960 - 2006,
while the test assets are the twenty-five Fama-French portfolios augmented by the ten

industry portfolios, as suggested by Lewellen, Nagel, and Shanken (2010).

6. Adrian, Etula, and Muir (2014), one factor: leverage. Following Lettau, Ludvigson,

"We thank the authors of Jagannathan and Wang (1996), Yogo (2006), Lettau and Ludvigson (2001),
Savov (2011), and Kroencke (2017) for sharing their data. For the models of Fama and French (1993),
Adrian, Etula, and Muir (2014), and He, Kelly, and Manela (2017), we use the extended data of risk factors
and test assets as in Lettau, Ludvigson, and Ma (2019).
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and Ma (2019), we extend the time period to 1963Q3 - 2013Q4, and use twenty-five

size and book-to-market sorted portfolios as test assets.

7. Kroencke (2017), one factor: unfiltered annual consumption growth. We use the post-
war 1960 - 2014 sample from Kroencke (2017), while thirty portfolios, sorted by size,

value and investment alongside the market portfolio, are used as test assets.

8. He, Kelly, and Manela (2017), two factors: banking equity-capital ratio and R,,. The
data are also taken from Lettau, Ludvigson, and Ma (2019) for the period 1963Q3 -

2013Q4, and twenty-five size and book-to-market sorted portfolios are the test assets.

Figure 5: Scatter plot of J and IS statistics for different specifications
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Notes: The zero-f return is incorporated. We revisit eight models and their associated factors.
Fama and French (1993): R,,, SMB, and HML; Jagannathan and Wang (1996): R,,, corporate
bond yield spread, and per capita labor income growth; Yogo (2006): R,,, durable and nondurable
consumption growth; Lettau and Ludvigson (2001): consumption growth, consumption wealth ratio
and their interaction; Savov (2011): garbage growth; Adrian, Etula, and Muir(2014): leverage;
Kroencke (2017): unfiltered consumption growth; He, Kelly, and Manela (2017): R,, and the
banking equity-capital ratio. For detailed descriptions of risk factors and test assets, we refer to
the published articles.
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The plotted points in Figure 5 roughly exhibit two patterns, which we illustrate by
using different colors (red and blue). For Fama and French (1993), Jagannathan and Wang
(1996), Savov (2011) and Kroencke (2017), we observe both large J and IS statistics, so
the corresponding models appear to be misspecified. In contrast, for Lettau and Ludvigson
(2001), Yogo (2006), Adrian, Etula, and Muir (2014), and He, Kelly, and Manela (2017), we
encounter small J and IS statistics, so these models are likely to be weakly identified.

The IS-statistics for the first set of four specifications are large and mostly significant
but they are also close to their respective J-statistics, which is revealed by the proximity of
these points to the 45-degree line. We can therefore not conclude from these /.S-statistics
that we identify risk premia. The most likely setting for identification is for Fama and French
(1993), whose (1.5, J) point is most distant from the 45-degree line.

For the second set of four points, the J-statistics are small and mostly insignificant,
indicating that the models might not be misspecified. However, their corresponding [I.S-
statistics are also similarly small, which implies that the low values of the J-statistics are
induced by the low values of the IS-statistics, since J-statistics are necessarily exceeded by
1 S-statistics. Hence, we cannot identify risk premia for these specifications.

Table 1: J and IS statistics
Panel A contains the J and IS statistics plotted in Figure 5, for which the zero-f3 return is

incorporated. In Panel B, the zero-3 return is removed so \g = 0. Significance at 1%, ***;
5%, **; 10%, *.

(A) Impose Ay = 0: No (B) Impose \g = 0: Yes
J-statistic I.S-statistic J-statistic IS-statistic

Fama and French (1993) 59.34%*%  106.81%** 8T.4THE 974 39%**
Jagannathan and Wang (1996) 75.07 103.54 86.46 103.56
Lettau and Ludvigson (2001) 31.11* 31.75% 37.15%* 40.90**
Yogo (2006) 17.14 17.34 19.42 19.60
Savov (2011) 134.27%%%  140.68%F%  268.60%F*  206.78%**
Adrian, Etula, and Muir (2014) 28.42 31.97 30.41 42.03**
Kroencke (2017) 59.84 % 78.47k 60.03***  102.77%**
He, Kelly, and Manela (2017) 35.32%* 35.88** 44.44%%* 59.74%**
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3.2 Removing the zero-$ return

Panel A in Table 1 states the values of the J and IS statistics plotted in Figure 5. Panel
B states these statistics when the zero-f return is removed, so A\g = 0. All statistics in
Panel B therefore exceed their corresponding counterparts in Panel A. Removing the zero-f3
return thus increases both the misspecification and identification. The misspecification has
increased since we removed a parameter from the pricing equation, while identification has
improved since removing the zero-f return allows to identify risk premia when the ’s are
constant over the assets, which was not so when the zero-g return was included. For some
of the specifications, the increase of the J and .5 statistics is disproportional. This is most
notably so for the Fama and French (1993) specification, where the I.S-statistic increases
ninefold while the J-statistic does so only minorly. For the other specifications, the increase
of the IS-statistic typically exceeds that of the J-statistic, but not by an amount which
makes it clear that the risk premia become well identified as is the case for the Fama and
French (1993) specification. For more than half of the specifications, the removal of the
zero-[3 return has therefore little effect on the identification of risk premia.

We note that the J and .S statistics presented in Figure 5 are just for illustrative pur-
poses. We do not aim to use these statistics to strictly reject or favor any model in Figure
5, since there are many other issues involved. These issues include, for example, that the
models used for Figure 5 contain various numbers of risk factors; in addition, their corre-
sponding empirical studies have used non-identical test assets; furthermore, the considered
time periods and frequencies also vary to a large extent. To address these concerns, we next
use the factor zoo data from Feng, Giglio, and Xiu (2020) to investigate misspecification and

weak identification in a more systematic manner.

3.3 Misspecification and weak identification in the factor zoo

How prevalent are misspecification and weak identification in empirical asset pricing studies?

With this question in mind, we extend our analysis to the factor zoo collected by Feng, Giglio,
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and Xiu (2020), which covers one hundred and fifty risk factors from July 1976 to December
2017, so T'= 498. We use the twenty-five Fama and French size and book-to-market portfolios

as test assets, which have been widely used as the default choice.

3.3.1 Prevalence of misspecification and weak identification

In line with existing studies, we evaluate all possible specifications of linear factor models
resulting from the factor zoo with K =1, 2, 3, 4, 5 and 6 factors. For K = 1, we therefore
consider Cls, = 150 single factor models. Similarly, we examine C%, = 11,175 (= 150 X
149/2) two-factor models; C3, = 551,300 three-factor models; Cfs, = 20,260,275 four-
factor models; Cs, = 591, 600, 030 five-factor models; and C%, = 14,297, 000, 725 six-factor
models.® For each model, we compute its J and IS statistics while incorporating the zero-3
return.

Table 2 states the frequencies of, at the 5% level, significant values of the .J-statistics, and
insignificant values of the I.S-statistics, signaling misspecification and weak identification,
respectively. Table 2 shows that, when we increase the number of factors, the resulting
factor models tend to be less misspecified, while becoming weaker identified. This results
naturally since on the one hand, adding more factors helps to better explain asset returns, so
the resulting models are less likely to be rendered misspecified; while on the other hand, since
some factors could be closely related to others, including more factors decreases the distance
of the # matrix from a reduced rank value, which leads to weaker identified models. We note
that the reported percentages in Table 2 likely understate the severeness of misspecification,
because the misspecification J-statistic tends to be insignificant under weak identification,
as we have discussed for Figure 5.

Overall, Table 2 shows that the majority of the examined models seem to suffer from
misspecification and/or weak identification. Apparently, there is also a trade-off between the

reported percentages of misspecification and weak identification in Table 2. We previously

8We used high-performance computers to conduct this study.
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have, however, shown that we cannot analyze the J and IS statistics in isolation, as in Table

2, to determine whether risk premia are identified, so we next analyze them jointly.

Table 2: Prevalence of misspecification and weak identification

The data of one hundred and fifty risk factors are taken from Feng, Giglio, and Xiu (2020).
The test assets are the twenty-five Fama and French size and book-to-market portfolios from
July 1976 to December 2017. Models are deemed misspecified at the 5% level, if the p-value
of the J-statistic does not exceed 5%. Models are deemed weakly identified at the 5% level,
if the p-value of the I.S-statistic exceeds 5%. The \g = 0 restriction is not imposed.

Number of Factors, K
1 2 3 4 5 6
Number of Models (CE) 150 11175 551300 20260275 591600030 14297000725

Misspecified (%) 98.67% 95.84% 87.11%  68.65% 43.58% 18.37%

Weakly Identified (%) 0.67%  2.08%  5.49% 15.40% 33.35% 50.28%

Figure 6: Joint empirical density of J and IS statistics

over the specifications with K factors from the factor zoo.




Figure 7: Contour lines of the joint empirical density of J and .5 statistics

over the specifications with K factors from the factor zoo.
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3.3.2 Joint empirical density of J and IS statistics resulting from the different

specifications

Because the J and IS statistics jointly indicate if the risk premia are identified, the six
pictures in Figure 6 show the bivariate empirical density functions (histograms) of the J and
1S statistics resulting from all the specifications having one to six factors presented in Table
2. Figure 7 shows the contour lines of these six empirical density functions.

When K = 1, Figures 6a and 7a show that almost all single factor models are associated
with large significant (at the 5% level) J-statistics. This is as expected, since it is unlikely
that a single factor explains all the variation in the cross-section of expected asset returns.
Specifically, 148 out of 150 single factor models are deemed misspecified by their significant J-
statistics at the 5% level, leading to 148/150 ~ 98.67% in Table 2. The remaining two single

factor models have small .J-statistics (see the bottom left of Figure 6a), but their /.S-statistics
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are also small. One of these two [.S-statistics is even insignificant at the 5% level, leading
to the 1/150 ~ 0.67% for weak identification in Table 2, while the other is insignificant at
the 1% level. Thus, these two factors are of poor quality, and their resulting single factor
models should also be deemed misspecified. The J-statistic fails to signal misspecification
for these two models, because the small IS-statistic forces it to be very small, given that
the J-statistic is less than or equal to the IS-statistic. Joint misspecification and weak
identification therefore occur in these two single factor models.

When we increase the number of factors so K = 2, 3, 4, 5 and 6, Figures 6b-f and 7b-f

show two clear patterns:

1. The J and IS statistics are overall decreasing.

2. The empirical bivariate density of the J and I.S statistics moves closer to the 45-degree

line.

While Table 2 shows that for K = 6, more than 50% of the examined specifications are
weakly identified, the second pattern listed above implies that many more specifications are
weakly identified, and similarly so for specifications involving fewer factors. This is analogous
to what we observed for Figure 5. Taken all together, it all shows that joint misspecification
and weak identification is a common problem that needs to be addressed.

Encouragingly, Figures 6 and 7 also show that there are specifications for which the (1.5,
J) combination is distant from the 45-degree line. For these specifications, the I.S-statistics
exceed their .J-statistics to a larger extent when compared to those in Figure 5. From a
purely statistical point of view, the specifications with J much smaller than IS are worth
investigation, since their pricing errors tend to be small while the risk premia are likely to
be well identified. It would be interesting if researchers could further relate these models
to economic theories. Yet given the large number of such models as shown by Figure 6, we

leave them for future research.
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4 Application

We show the importance of J, IS and DRLM statistics for applied asset pricing by revisiting
two prominent examples: the Fama and French (1993) model and the conditional consump-
tion capital asset pricing model from Lettau and Ludvigson (2001). Table 3 therefore reports
the estimation results for the three-factor specification used in Lettau and Ludvigson (2001),
and for Fama and French (1993) using three different data sets. Accordingly, Figure 8 shows

the joint 95% confidence sets resulting from DRLM for all four specifications in Table 3.

4.1 Fama and French (1993)

The Fama and French (1993) three-factor model has been widely used as a benchmark in the
asset pricing literature; see, e.g., Lettau and Ludvigson (2001) and Lettau, Ludvigson, and
Ma (2019). In line with the large, significant (at the 1% level) J-statistics in Table 3, the
Fama and French (1993) three-factor model is well acknowledged to be misspecified. Yet this
model appears able to explain the cross-section of asset returns, as reflected by the reported
large cross-sectional R2.

Using quarterly data from Lettau and Ludvigson (2001) and Lettau, Ludvigson, and Ma
(2019), the two-pass procedure of Fama and MacBeth (1973) suggests that the risk premia
on SMB and HML are both positive; in contrast, the point estimate of the market premium is
negative in Lettau, Ludvigson, and Ma (2019), but positive in Lettau and Ludvigson (2001);
see Panel A versus Panel B in Table 3. Because Lettau, Ludvigson, and Ma (2019) use
longer time series than Lettau and Ludvigson (2001), its [.S-statistic is considerably larger
(106.81 vs. 47.01), reflecting that more information is available for identification in Lettau,
Ludvigson, and Ma (2019). On the other hand, the larger J-statistic for Lettau, Ludvigson,
and Ma (2019) (59.34 vs. 45.38) implies more severe misspecification. A question thus arises:
how do we reconcile the seemingly conflicting findings in Lettau, Ludvigson, and Ma (2019)

and Lettau and Ludvigson (2001) for R,, in the Fama and French (1993) three-factor model?
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Table 3: Risk Premia \r for the three-factor models of Fama and French (1993)
and Lettau and Ludvigson (2001)

The test assets are the 25 Fama-French portfolios from 1963Q3 - 2013Q4 used in Lettau,
Ludvigson, and Ma (2019) for Panel A, from 1963Q3 - 1998Q3 used in Lettau and Ludvigson
(2001) for Panel B and Panel C, and from July 1963 - June 2021 downloaded from French’s
website for Panel D, respectively. The estimates of \r result from the Fama and MacBeth
(1973) two-pass procedure, and are identical to those reported in Lettau, Ludvigson, and
Ma (2019) and Lettau and Ludvigson (2001) when using the same data. The presented
FM t-statistic and its resulting 95% confidence interval (C.I.) of risk premia do not use
the Shanken (1992) correction, while Shanken ¢ does. The KRS ¢ is computed by using the
programs provided by Kan, Robotti, and Shanken (2013). The zero-$ return is incorporated.

A: Lettau, Ludvigson, and Ma (2019)

B: Lettau and Ludvigson (2001)

R, SMB HML Ry, SMB HML
AEFM -1.96 0.70 1.35 1.33 0.47 1.46
AFCUE -4.15 0.82 0.86 -11.26 0.69 1.52
FM ¢t -1.72 1.67 2.64 0.83 0.94 3.24
95% C.IL (-4.18,0.27) (-0.12, 1.52)  (0.35, 2.35) (-1.81, 4.46) (-0.51, 1.45)  (0.58, 2.34)
Shanken ¢t -1.64 1.66 2.60 0.78 0.94 3.22
95% C.L (-4.29, 0.38) (-0.13, 1.52)  (0.33, 2.37) (-2.02, 4.68) (-0.51,1.45)  (0.57, 2.35)
KRS t -1.33 1.65 2.52 0.63 0.96 3.26
95% C.L (-4.83,0.92) (-0.13,1.53)  (0.30, 2.40) (-2.78, 5.44)  (-0.49, 1.43)  (0.58, 2.34)
R? 0.73 0.80
J-statistic 59.34 45.38
I S-statistic 106.81 47.01

C: Lettau and Ludvigson (2001)

D: Monthly data from July 1963 - June 2021

Ac cay Ac X cay Ry, SMB HML
AFFM 0.02 -0.13 0.06 -0.53 0.13 0.34
AF,CUE -1.45 -3.80 0.01 -0.52 0.19 0.32
FM ¢ 0.20 -0.43 3.12 -1.75 1.09 2.93
95% C.I. (-0.20, 0.25)  (-0.70, 0.45)  (0.02, 0.09) (-1.11,0.06) (-0.11,0.37)  (0.11, 0.57)
Shanken ¢ 0.15 -0.31 2.25 -1.74 1.09 2.92
95% C.L (-0.29, 0.34)  (-0.93, 0.68)  (0.01, 0.11) (-1.12,0.07) (-0.11,0.38)  (0.11, 0.57)
KRS ¢ 0.08 -0.27 1.95 -1.67 1.09 2.94
95% C.1. (-0.53, 0.58) (-1.03, 0.78)  (-0.00, 0.11)  (-1.14, 0.09) (-0.11,0.37)  (0.11, 0.57)
R? 0.70 0.75
J-statistic 31.11 52.25
1S-statistic 31.75 425.55
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Figure 8: Joint 95% confidence sets of risk premia from the DRLM test.
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Notes: The red region consists of risk premia values that are not rejected by the DRLM test at
the 5% significance level. The test assets are the twenty-five Fama-French portfolios taken from
Lettau, Ludvigson, and Ma (2019) over 1963Q3 - 2013Q4 for (a), Lettau and Ludvigson (2001)
over 1963Q3 - 1998Q3 for (b) and (c), and monthly data from July 1963 - June 2021 downloaded
from French’s website for (d), respectively. (a)(b)(c)(d) correspond to Panels A, B, C, D of Table
3. The zero-g return is incorporated.
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To help answer this question, we employ the DRLM test, since this test is robust to
misspecification as well as the strength of identification. Specifically, we test every risk
premium value between -5 and 5, since Table 3 Panel A and Panel B indicate that risk
premia on all three factors likely lie within this range. The resulting joint confidence sets at
the 5% level are presented in Figure 8a-b, using the data from Lettau, Ludvigson, and Ma
(2019) and Lettau and Ludvigson (2001), respectively.

Interestingly, Figure 8a-b show that the risk premia on SMB and HML are strongly
identified, while the risk premium on R, is not. These findings remain similar no matter
whether we adopt the data from Lettau, Ludvigson, and Ma (2019) or Lettau and Ludvigson
(2001). In both Figure 8a-b, we can not reject any risk premium value on R,, between -5 and
5, which thus helps reconcile the difference in the confidence intervals for the risk premium
on R, reported in Table 3 Panel A and Panel B.

For SMB and HML, however, the DRLM test yields tight 95% confidence sets for their
risk premia in Figure 8. For example, Figure 8a implies that the range of the risk premium
on SMB is (0.59, 1.06), while the range of the risk premium on HML is (0.04, 2.00). Similar
ranges can be derived from Figure 8b. All these sets thus largely overlap with those resulting
from the FM t-test as reported in Table 3 Panel A and Panel B.

One might wonder what causes the large difference in the risk premia between R, and
SMB, HML. To illustrate, we present their 5 estimates and associated t-statistics in Table
4. It is clear in Table 4 that the three Fama and French (1993) factors are all closely related
to the test asset returns as reflected by the significant ¢-statistics. There is, however, little
cross-sectional variation in the estimated betas of R,,, i.e. the S estimates on R,, are all close
to 1. Thus, if the zero-f return is incorporated, we have near-multicollinearity in the (¢ :
f) matrix for the cross-sectional regression, causing the market risk premium to be weakly
identified. Consequently, we observe in Table 3 Panels A and B the seemingly conflicting
risk premium values on R,,, but not for SMB and HML. For the same reason, we observe in

Figure 8a-b the wide range for the risk premium on R,,, but narrower ones for SMB, HML.
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Table 4: § with 25 portfolio returns

The test assets are the 25 Fama-French portfolios. For R,,, SMB, and HML, we use the data
from 1963Q3 - 2013Q4 used by Lettau, Ludvigson, and Ma (2019). For Ac, cay, Ac X cay,
we use the data from 1963Q3 - 1998Q3 used by Lettau and Ludvigson (2001). The reported
beta estimates and their associated t-statistics result from the first pass time-series regression
of the Fama and MacBeth (1973) methodology, see also Kleibergen, Kong, and Zhan (2020)
for the same results reported for Lettau and Ludvigson (2001).

Ry, SMB HML Ac cay Ac X cay

8 t-stat 8 t-stat 15} t-stat 15} t-stat (8 t-stat 15} t-stat
1.08 26.50 150 25.11 -0.31 -6.36 | 6.35 2.32 425  2.96 -4.56 -0.22
094 3273 1.33 31.52 0.02 0.69 6.30 261 3.66 2.90 2.25 0.12
0.86 29.98 1.14 27.08 0.19 5.56 5.11 2.28 322  2.75 3.22 0.19
0.81 26.16 1.10 24.32 0.29 8.02 5.50 2.58 2.96 2.65 5.12 0.32
094 2829 1.17 24.04 0.57 14.37 | 5.79 2.563 265 221 11.36 0.65
1.11 36.22 1.05 2349 -0.33 -8.97 | 4.38 1.76 455 349 -15.82 -0.84
094 36.04 097 2532 0.05 1.48 3.63 1.65 3.25 283 0.02 0.00
0.92 33.18 0.76 1880 0.22 6.81 | 3.92 1.97  3.07 295 -1.08 -0.07
091 2994 0.68 1532 0.42 11.67 | 3.52 191 2.66 2.76 6.93 0.50
098 3095 0.81 1755 0.66 1747 | 4.83 241 216  2.06 8.48 0.56
1.08 39.19 0.76 1865 -0.39 -11.96 | 2.70 1.21 453 388 -2220 -1.31
0.99 3598 0.60 14.70 0.07 2.16 2.76 147  3.64 3.69 -3.35 -0.23
0.91 29.02 0.49 10.71 0.28 7.51 2.92 1.69 2.63 291 4.40 0.34
0.95 28.29 0.40 8.19 0.47 11.66 | 2.58 1.57 273  3.18 0.02 0.00
091 23.16 0.62 10.77  0.57 1220 | 3.71 1.98 2.15 2.19 4.78 0.34
1.07 38.14 043 1037 -0.42 -12.67 | 1.97 1.02 422 420 -20.28 -1.39
1.01  31.06 0.32 6.63 0.13 3.31 2.62 1.49 3.28 3.58 -10.24 -0.77
1.00 3259 0.22 4.94 0.32 8.74 1.94 121 2.57  3.06 -4.98 -0.41
0.98 30.21 0.22 4.56 0.40 10.44 | 2.50 1.56 232 276 0.60 0.05
1.05 27.69 0.36 6.41 0.61 13.46 | 3.78 2.05 226 234 3.28 0.23
1.02 46.70 -0.20 -6.30 -0.27 -10.39 | 1.61 1.01 277 333 -21.22 -1.76
0.99 39.05 -0.19 -5.16 0.07 2.25 1.16 0.80 253  3.33 -4.20 -0.38
0.93 3210 -0.23 -5.34 0.27 7.93 2.32 1.88 246 3.80 -8.27 -0.88
0.94 36.21 -0.16 -4.29 0.45 14.52 1.24 0.94 2.24 3.25  -10.49 -1.05
0.99 26.11 -0.13 -2.40 056 1231 | 3.07 2.13 1.59 211 -1.25 -0.11
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4.2 Lettau and Ludvigson (2001)

To compare with Fama and French (1993), we consider the conditional consumption capital
asset pricing model from Lettau and Ludvigson (2001) where the three factors are con-
sumption growth, Ac, consumption-wealth ratio, cay, and their interaction, Ac x cay. The
significant FM ¢ and Shanken t-statistics on the interaction Ac x cay, the relatively small,
insignificant (at the 5% level) J-statistic, together with the large cross-sectional R? reported
in Panel C of Table 3 provide considerable motivation for this model for asset pricing.

The small I.S-statistic in Panel C of Table 3, however, shows that the three-factor model
of Lettau and Ludvigson (2001) is just weakly identified. Furthermore, given its proximity to
the J-statistic, the small value of the J-statistic also results from it, since the J-statistic is at
most equal to the /.S-statistic. The risk premia can therefore not be identified. Consequently,
the significant FM t-statistic on Ac x cay should be interpreted with caution, since the FM
t-test is now unreliable and this reasoning similarly applies to the KRS t-test. Also, as
warned by Kleibergen and Zhan (2015), weakly identified models can yield spuriously large
cross-sectional R?’s, which should then not be taken as the evidence in support of asset
pricing.

Next, we apply the DRLM test to the three-factor model of Lettau and Ludvigson (2001).
As shown by Figure 8c, we can not reject any hypothesized value for risk premia in the
range of [-5, 5], reflecting that the risk premia can not be identified for the conditional
consumption capital asset pricing model in Lettau and Ludvigson (2001), which is in line
with the proximity of the J and IS statistics.

The challenge to identify the risk premia in Lettau and Ludvigson (2001) is further
explained by Table 4, which contains the  estimates and their associated t-statistics. Table
4 shows that Ac x cay is poorly correlated with asset returns, which makes a column of
[ statistically close to zero (i.e. tiny t-statistics in the last column). Thus, the full rank
condition of 3 is problematic, which leads to the weak identification problem in Lettau and

Ludvigson (2001). Consequently, we observe a small [.S-statistic, which tests for a full rank
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value of (3, in Panel C of Table 3, and uninformative confidence sets in Figure 8c.

In light of the findings in Figure 8a-c, one might wonder when the DRLM test could yield
an informative confidence set for the risk premia. We show that a bounded confidence set
of the risk premia is feasible if we just have more time series observations, or if we remove
the zero-f return, so Ay = 0, as presented in the next two subsections, respectively.

Table 5: 7 with 25 portfolio returns using alternative data for Fama and French
(1993)

The test assets are the 25 Fama-French portfolios. For R,,, SMB, and HML in the left panel,
we use the data from 1963Q3 - 1998Q3 as in Lettau and Ludvigson (2001); and from July
1963 - June 2021, downloaded from French’s website, for the right panel, respectively. The
reported beta estimates and their associated t-statistics result from the first pass time-series
regression of the Fama and MacBeth (1973) methodology.

Ry, SMB HML R, SMB HML

8 t-stat 154 t-stat 153 t-stat | B t-stat I} t-stat 15} t-stat
(1) 1.00 2140 1.53 2543 -0.29 -4.44 | 1.09 49.32 1.38 43.79 -0.48 -14.87
(2) 098 30.06 1.37 3247 0.11 249 | 095 53.68 1.31 51.69 -0.17 -6.58
(3) 097 30.66 1.21 29.54 0.28 6.39 | 092 75.00 1.09 61.84 0.15 8.16
(4) 096 3484 1.15 3246 043 11.38 | 0.87 72.34 1.07 61.78 0.32 17.81
(5) 1.03 3238 1.24 30.15 0.76 17.24 | 0.93 5258 1.08 42.39 0.53 20.15
(6) 1.04 2717 1.08 21.77 -049 -9.31 | 1.12 7644 1.03 48.82 -0.51 -23.70
(7) 1.01 31.82 1.00 24.45 0.00 0.10 1.00 82.03 0.92 52.68 -0.01 -0.73
(8) 1.02 3596 0.83 22.65 0.23 5.96 | 096 75.66 0.76 41.93 0.28 14.97
(9) 1.02 36.41 0.69 19.10 047 1223 | 0.94 80.20 0.72 42.72 047 27.34
(10) 1.07 36.32 0.83 21.88 0.76 18.66 | 1.07 84.69 0.88 4820 0.65 35.21
(11) 1.06 3154 0.75 1717 -0.46 -10.02 | 1.10 7820 0.74 36.81 -0.51 -24.97
(12) 1.01 31.29 065 15.68 0.00 0.05 1.01 73.17 0.60 26.93 0.06 291
(13) 1.00 3468 0.54 14.47 0.31 7.83 | 097 68.10 0.44 21.75 0.35 16.85
(14) 1.02 3548 043 11.56  0.50 12.58 | 0.98 72.25 044 2251 0.55 27.59
(15) 1.07 30.24 0.61 13.28 0.78 1587 | 1.07 63.75 0.57 23.75 0.74 29.92
(16) 1.02 30.70 0.39 9.04 -0.48 -10.42 | 1.07 74.82 0.39 19.12 -045 -21.72
(17) 1.06 31.66 0.32 7.48 0.02 049 | 1.06 69.04 0.23 1045 0.17 7.52
(18) 1.05 34.63 0.22 5.90 0.32 7.54 1.03 65.57 0.18 8.07 0.40 17.55
(19) 1.07 3194 0.22 5.03 0.50 1092 | 1.02 66.30 0.23 10.28  0.56 24.57
(20) 1.12 25.63 0.44 7.86 0.70 11.67 | 1.15 61.12 0.30 11.00 0.78 28.16
(21) 1.00 3439 -023 -6.20 -0.39 -9.61 | 098 9517 -0.23 -1589 -0.31 -20.80
(22) 1.02 3317 -0.21 -519 -0.05 1.16 | 097 7534 -0.18 -9.65 0.11 5.68
(23) 091 24.75 -0.23 -4.87 0.16 3.09 1.06 87.14 -0.13 -7.54 0.35 20.06
(24) 1.00 3520 -0.16 -4.28 044 11.26 | 1.05 82.15 -0.20 -10.70 0.37 19.72
(25) 099 2047 -0.09 -1.39 0.69 10.30 | 1.06 77.70 -0.26 -13.49 0.39 19.42

38



4.3 More time series observations

With more time series observations, we expect more information in the data and conse-
quently, stronger identification of the risk premia. Figure 8d therefore uses monthly data
from July 1963 to June 2021, so T" = 696, for the Fama and French (1993) three factors
and the twenty-five size and book-to-market sorted portfolios, which are downloaded from
French’s online data library. Table 5 (right panel) shows the resulting 5 estimates from which
it is clear that the standard errors of the estimates have almost halved, which doubles the
t-statistics testing their significance, while there is also more variation in the 5 estimates for
R,, when compared to the left panel of Table 5 with fewer observations. The estimate of /3
is consequently distant from a reduced rank value as shown by the large I S-statistic, 425.55,
in Panel D of Table 3. It considerably exceeds the resulting .J-statistic, 52.25, indicating
strong identification of the risk premia.

In line with such strong identification, Figure 4d shows that the joint 95% confidence set
of the risk premia on the Fama and French (1993) factors resulting from the DRLM test lies in
a tight region of the 3-dimensional space. Specifically, this confidence set contains all values
of the risk premia that are not rejected by the DRLM test at the 5% level. Combining all
these values results in the red joint confidence set plotted in Figure 4d. Moreover, projecting
the joint confidence set to each axis yields the 95% confidence intervals for each risk premium:
(-1.22, 0.18) for R,,, (0.12, 0.26) for SMB, and (0.24, 0.41) for HML, respectively. These
95% confidence intervals are also comparable to, but often smaller than those reported in

Panel D of Table 3 by inverting the FM ¢, Shanken ¢ and KRS ¢ tests.

4.4 Remove the zero-$ return, impose \y =0

Instead of using richer data, we can also remove the zero-f return, so impose \g = 0, to
improve the identification of the risk premia. When we do so by using the data from Lettau,
Ludvigson, and Ma (2019), the J-statistic equals 87.47 and the [ .S-statistic becomes 974.39.

Hence, the I S-statistic has increased ninefold while the J-statistic remains almost the same
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compared with the specification including the zero- return in Panel A of Table 3. It indicates
that the risk premia are now well identified.

To illustrate further, we use DRLM to construct the joint 95% confidence set in Figure
9, where Ay = 0 is imposed for the Fama and French (1993) model. Figure 9 is to be
compared with Figure 8a. They use the same data, but Ay = 0 is imposed for Figure 9 but
not for Figure 8a. Clearly, the A\q = 0 restriction strongly improves the identification of the
risk premia, so we observe a bounded 95% confidence set in Figure 9. Projecting the joint
confidence set to each axis leads to 95% confidence intervals for the risk premia on R,,, SMB,
and HML, respectively: (1.52,1.84) for R,,, (0.66,1.06) for SMB, and (0.59, 1.93) for HML.

Since the three factors are traded, we can also infer the 95% confidence sets on their
risk premia by using the average value of the respective factor £ 1.96 x standard deviation,
which leads to (0.41,2.80) for R,,, (0.18,1.78) for SMB and (0.05,1.81) for HML. These
confidence intervals are comparable to those derived above by the projection method, but
are considerably wider. All these empirical findings therefore lend credibility to the proposed
DRLM test.

Figure 9: Joint 95% confidence set of risk premia by the DRLM test for the
Fama and French (1993) model with the Ay = 0 restriction.

Notes: The red region consists of risk premia values that are not rejected by the DRLM test at
the 5% significance level. The test assets are the twenty-five Fama-French portfolios taken from
Lettau, Ludvigson, and Ma (2019) over 1963Q3 - 2013Q4.
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4.5 Further discussion

Though misspecified, the Fama and French (1993) three-factor model has been well docu-
mented to exhibit relatively strong correlations with asset returns. Indeed, the model leads
to large IS-statistics as we report in Table 3. Astonishingly, even when the [.S-statistic is
significant and exceeds 100 (see Panel A of Table 3), we still find that the risk premium
on R, is only weakly identified in the beta representation. Given that a large number of
empirical studies, as indicated by Table 1, have weaker strength of identification than Fama
and French (1993), it is therefore unlikely that their risk premia could be precisely identified.
To achieve stronger identification, we therefore need to adopt richer data or impose extra
restrictions, as indicated by Figure 8d and Figure 9, respectively.

The conditional consumption capital asset pricing model in Lettau and Ludvigson (2001)
serves as an example where the FM t-statistic, the misspecification J-statistic, and the cross-
sectional R? line up nicely to show support for the model. Yet the model appears to lack
identification, as reflected by the tiny difference between the J and .5 statistics, and the
wide confidence set resulting from the DRLM test, since the rank condition of (3 is likely
violated. These empirical findings thus clearly show the importance of adopting the J, IS
statistics and the DRLM test for assessing asset pricing models.

In the Appendix, we further extend our empirical analysis to the five-factor model of
Fama and French (2015). Similar to Figure 9, we find that the DRLM test can lead to
tight 95% confidence sets for the risk premia on R,,, SMB, HML. For the other two factors
(profitability, RMW; investment, CMA), we find that the 95% confidence sets resulting
from DRLM appear relatively wide, especially for the investment factor. These findings are
consistent with those in Kleibergen and Zhan (2015), who show that the commonly used
25 Fama-French portfolios have a strong factor structure, i.e., the majority of variations in
these portfolios are likely captured by three factors, so it is hard to precisely identify risk

premia on all five factors by using such test assets.
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5 Conclusion

An alarmingly large number of factors in the asset pricing literature are able to yield sig-
nificant t-statistics on their risk premia, together with seemingly promising misspecification
J-statistics and cross-sectional R?’s. The credibility of these conventional statistics, however,
is threatened by misspecification and weak identification, both of which are prevalent as we
document in this paper. We show that failure to account for both misspecification and weak
identification could easily lead to erroneous conclusions. To remedy these problems, we sug-
gest that the J-statistic for misspecification, the I S-statistic for identification strength, and
the DRLM test for risk premia become part of a toolkit that helps to provide trustworthy

diagnosis and inference in future studies.
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Appendix

Proof of Theorem 1: Consider repackaging the assets to a new set of N* assets by an
invertible N x N weight matrix A :

The pseudo-true value resulting from the FM two-pass population objective function is:

;,FM = (5*/5*)71 5*/MR* = (554,/45)71 B/A,A/JJRa

with " = AB, up. = Aug, which is not equal to the pseudo-true value resulting from the
orginal set of assets unless A is orthogonal. Since an orthogonal matrix A does not lead
to a set of portfolios, the FM pseudo-true value is not invariant under repackaging. Under
correct specification, p1p = SAp, so the risk premium is invariant to repackaging.

The pseudo-true value resulting from the CUE objective function:

. —1
houp = argming (ug — BAR) [var(iig — BAr)| (g — BAr)
. —1
= argminy, (Aup — ABAR) [var(AﬂR - AB)\F)] (App — ABAR)
~ % -1
= argminy, (- — B Ap) [var(ig: = BAR)| (g — B°Ar),
is clearly invariant to repackaging by an invertible matrix A, but not to repackaging by an

N* x N matrix with N* smaller than N.

Proof of Theorem 2: The FM two-pass estimator is given by:

We characterize the limit behavior of the FM two-pass estimator for the one factor setting,

B?BR' It results from the joint limit behavior of its two different elements:

SO A\p =

p—p T\ ¥
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with ¢, ~ N(0,Q + BQpB’) and Y5 ~ N(0,Q2Q") independently distributed which corre-
sponds with Shanken (1992, Lemma 1). To focus on a setting where both the misspecification
and betas are small and perhaps just borderline significant, we use the weak factor/small 3

and misspecification assumption (16):

B=pPr= \/Lfa pr — BAR = \/LT, Ay = Ap + (b'b) ¥ a,

with b and a N-dimensional vectors of constants. Under the small misspecification and /3

assumption, the limit behavior of the least squares estimator B and ji are characterized by:
VIB = b+t VTjig — bAp +a+ 1,

which we use to characterize the behavior of the FM risk premia estimator

Ap = BB _ an=BALABNY)B _ x| (in=BAp)'B
EE 55 E B
_ )\*F+[ﬂR*MRJF(MR*/gl)\B})*(ﬁfﬁ))\Hlﬂ

with A% = Zir — ) r+ (b'b) "tV a, the pseudo-true value, so for small values of the betas and

8’6
misspecification:
So At (VT (i) +VT (1 r—BN3) —VT (B-B)A5)| (VTH)
F= 2F (VT3) (VT5)
* (¥, +bAp+a—bAp+ (D)~ a)—hg A L] (b+1bg)
) +05) (0705
_ )\*F_’_W#-i-e—?ﬁg)\*p)'(b-i-w@)

(b+v) (b+vg)
% (1 . P (b+1g) ) + P, (b+1bg) e/ (b+1g)
- F (b+1g) (b+4g) (b+1g) (b+4g) (b+1bg) (b+ipg)?

with e = a — b(b'b)~*b'a, which shows that the limit behavior of the FM two-pass estimator

consists of four components.

The DRLM test: Kleibergen and Zhan (2021) propose the double robust Lagrange mul-
tiplier (DRLM) statistic for testing hypotheses on the pseudo-true value of the CUE. They
show that under the hypothesis of interest, Ho : A cpyp = Ak oo, the limiting distribution

of the DRLM statistic is bounded by a y3% distribution for general values of the identifica-
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tion and misspecification strengths under weak conditions. The DRLM statistic involves a
recentered estimator of the 3’s that depends on the hypothesized value of the pseudo-true

value, which we indicate by the K-dimensional vector [ :

D)= =B~ Vs, un-sn (D Vi (1) (o — BI) ..
Vs setn—0 (D) V-0 (1)~ (g — Bl)]

= —B—(R=BH(+1Qrp) ™ 'Qpp,

= AL R(EAY [ESL A DE ]

where Vgi(ﬂR,m) is the estimator of the covariance between Bl and fip — Bl, fori=1,..., K,

B = (B 1ee- B ) and V( un—Bxp) (1) is the covariance matrix estimator of the sample pricing error

flp — Bl . The identical expressions on the last two lines are for a setting of i.i.d. errors with

Q 77 the estimator of the covariance matrix of the factors, Q FE = % ZL FF, F,=F,—F,
=7 Zt , It. The DRLM statistic for testing Ho : A\ oy = [ then reads:

DRLM(1) = T % (jig = B Vi (1) D) [ D) Vi (1) D)+
I © Vi () = 50 Voo0) (1 ® Fpanl0) G = 1)

() Vi (D) (g — ),

/\'ﬂ

o>

where VD([) is the estimator of the covariance matrix of vec(D(l)). For the i.i.d. setting, it

simplifies to:

DRLM(I) = (1) D()* | 0)*ul)* Iy + DAY D) | D)0y,
with (1) = VT 3 (R — BI)(1+ Q7515 and D(1)* = VTQ 2 D(1)(Qpp + )%

The 100 x (1—a)% confidence set for A\ o175 (denoted by CSy below) that results

FCUE( )

from the DRLM test consists of all values of [ for which the DRLM test does not reject using
the 100 x (1 — a)% critical value that results from the y2%-distribution:

CS)\},CUE(O‘) = {l: DRLM(I) < x%(a)},
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where y% () is the upper a-th quantile of the x% distribution. DRLM() is not a quadratic
function of [, so it cannot directly be inverted to obtain the confidence set. The confidence
set does therefore not have the usual expression of an estimator plus or minus a multiple
of the standard error. Instead, we have to specify a K-dimensional grid of values for [, and
compute the DRLM statistic for each value of [ on the K-dimensional grid to determine if
it does not exceed the appropriate critical value so [ is part of the confidence set.

The DRLM statistic is a quadratic form of the derivative of the sample CUE objective
function with respect to [. It is therefore equal to zero at all stationary points of the sample
CUE objective function. Since the DRLM statistic is not a quadratic function of [, there can
be multiple stationary points where it equals zero. This affects the discriminatory power of
the DRLM test. Kleibergen and Zhan (2021) therefore propose a power improvement rule
which rejects values of [ at the a% significance level, alongside values of | where the DRLM
statistic is significant at the a% level also, when there are significant values of the DRLM
statistic on every line going from the hypothesized value to the CUE. Kleibergen and Zhan
(2021) show that the power improvement rule does not affect the size of the DRLM test and
improves power considerably.

Since the DRLM test is size correct, the coverage of a 100 x (1 — «)% confidence set is at
least 100 x (1 — a)%. By projecting these confidence sets on the K different axes, we obtain
100 x (1 — )% univariate confidence sets for the individual risk premium whose coverage
is also at least 100 x (1 — «)%. When we plug in estimators for some of the risk premia,
the coverage of the resulting confidence sets is not guaranteed nor is the size of the resulting
subset DRLM test.

When using the power improvement rule, the confidence sets resulting from the DRLM

test can have two distinct shapes.

1. Bounded and convex: there is a closed compact set of values of [ for which the DRLM

statistic does not exceed the critical value.

2. Unbounded: this occurs either when there are no values of [ for which the DRLM
statistic exceeds the critical value (unbounded and convex), or when there is a bounded

set of values of | for which the DRLM statistic exceeds the critical value (unbounded
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and disjoint).

Bounded and convex confidence sets occur when the risk premia are well identified.
Unbounded confidence sets are indicative of identification failure. Dufour (1997, Theorems
3.3 and 3.6) formally proves that a size correct test on a parameter which is potentially not
identified must have a positive probability of producing an unbounded 95% confidence set.
Conversely, any test procedure, such as the FM t-test, that cannot generate an unbounded
95% confidence set, cannot be a size correct test procedure when the tested parameter can

be non-identified.

J and IS statistics:

1. If \g = 0 is not imposed: consider R; = (Ris... Rn+14): (N+1)x 1 vector of returns;
Fy: K x 1 vector of risk factors, t = 1, ..., 7. By subtracting the (N +1)-th asset return,

we obtain the N x 1 column vector R;:

R, = (Rl,t .- -RN,t)/ - LNRNH,t-

2. If \p = 0 is imposed: consider R; as the observed N x 1 vector of returns, and F; as

the K x 1 vector of risk factors.

Estimation of the auxiliary linear factor model R, = o + SF}; + u; yields

E>
=
|
=

where Ft = Ft—F, F = % Zf:l E, Rt = Rt—R, R = % Zle Rt, and ftt = (Rt—R)—
is the residual at time ¢.

Let 7k be the smallest root of
N1 _ A/Q—IA -0
pQrp — B Bl =0,
~ Al A A~
which is identical to the smallest eigenvalue of the matrix Qpp3 Q= 13. The IS-statistic for

30



Hp : rank(8) = K — 1, reads:

IS =T xrk = x&_ki1-

Let “Eigen, . " be the smallest root of

min

1 0 _ o\ A A
o g )R )R )=

1 0 _ .

which is equal to the smallest eigenvalue of . ( R B > 01! ( R B > . The
0 Qrr

misspecification J-statistic for testing Hy : E(R;) = SAr reads:

J =T x Eigen,,;, <, X K-
DRLM for the Fama and French (2015) five-factor model: See Table 6.

Table 6: Application to the Fama and French (2015) five-factor model

The five factors (R,,, SMB, HML, RMW, CMA) of Fama and French (2015) are downloaded
from French’s website, together with the 25 Fama-French portfolios from July 1963 - Nov
2021 as the test assets. The zero-£ return, \y = 0 restriction is imposed for the DRLM test.
The resulting J-statistic is 68.16, and I S-statistic is 113.05.

Ry, SMB HML RMW CMA
mean 0.59 0.23 0.27 0.27 0.26
s.e. 0.17 0.11 0.11 0.08 0.07

Comparison of 95% C.I. of A\p
(I) CI. by mean + 1.96 s.e.  (0.26, 0.92) (0.00, 0.45) (0.05, 0.48) (0.11, 0.43) (0.12, 0.41)
(II) C.I. by DRLM (0.55, 0.69) (0.15, 0.31) (0.15, 0.32) (0.01, 0.31) (0.15, 1.29)

Ratio of the C.I. widths, % 21% 36% 40% 94% 393%
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