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Abstract

The widespread co-existence of misspecification and weak identification in asset

pricing has led to an overstated performance of risk factors. Because the conventional

Fama and MacBeth (1973) methodology is jeopardized by misspecification and weak

identification, we infer risk premia by using a double robust Lagrange multiplier test

that remains reliable in the presence of these two empirically relevant issues. Moreover,

we show how the identification, and the resulting appropriate interpretation, of the risk

premia is governed by the relative magnitudes of the misspecification J-statistic and the

identification IS-statistic. We revisit several prominent empirical applications and all

specifications with one to six factors from the factor zoo of Feng, Giglio, and Xiu (2020)

to emphasize the widespread occurrence of misspecification and weak identification.
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1 Introduction

Over the past decades, hundreds of risk factors have been proposed to explain the cross-

section of asset returns, making up the, so-called, zoo of factors; see, e.g., Cochrane (2011)

and Harvey, Liu, and Zhu (2016). Much of the empirical support for these factors is based on

the beta representation, where risk premia are identified by projecting expected returns on

the betas, and the betas are the factor loadings in the time-series regression of asset returns

on risk factors; see, e.g., Fama and MacBeth (FM, 1973). The resulting FM t-statistic on

risk premia, Hansen (1982)’s J-statistic for misspecification and the cross-sectional R2, are

widely used in the asset pricing literature to show support for proposed risk factors. The

reliability of these conventional statistics has, however, recently been brought into question

by two empirically relevant issues: misspecification and weak identification.

Up till now, misspecification has been widely acknowledged as an inherent feature of asset

pricing models; see, e.g., Gospodinov, Kan, and Robotti (2014). For the beta representation,

misspecification results in expected returns that are not fully explained by the betas of the

specified factors. Thus, pricing errors generally exist and should be taken into account when

conducting inference on risk premia. Kan, Robotti, and Shanken (KRS, 2013) therefore

propose the KRS t-test, which explicitly allows for the existence of misspecification while

the FM t-test does not. As warned by Kan, Robotti, and Shanken (2013), failure to account

for misspecification tends to enlarge the t-statistic on risk premia, leading to overstated

pricing performance of risk factors.

Weak (or no) identification, on the other hand, is driven by poor quality risk factors

or more generally, limited information contained in the data. Kan and Zhang (1999), for

example, warn that risk factors proposed in the literature could be useless factors with zero

betas. When betas are zero, risk premia are unidentified in the beta representation and

paired with misspecification, the FM t-statistic can be spuriously large to support useless

factors as shown by Kan and Zhang (1999). In addition, Kleibergen (2009) illustrates the

malfunction of the FM t-statistic caused by factors that are only weakly correlated with asset
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returns and proposes robust tests to address weak identification of risk premia. Moreover,

Kleibergen and Zhan (2015, 2021) show that the cross-sectional R2 and J-statistic may also

spuriously favor statistically weak factors, respectively.

Despite that misspecification and weak identification are well recognized, there is cur-

rently no unified approach for identification and inference that can deal with these empirically

relevant issues. We therefore advocate such an approach and apply it to show the widespread

occurrence of misspecification and weak identification in applied asset pricing studies.

When misspecification is present, there is no longer a (true) value of the risk premia at

which the pricing error is zero. Different estimation procedures then lead to distinct pseudo-

true values of risk premia, which are the minimizers of the population objective function

of the respective estimation procedure. We show that, in case of generic misspecification,

the difference between the pseudo-true value of two estimation procedures, i.e. the FM two-

pass approach and the continuous updating estimator (CUE) of Hansen, Heaton, and Yaron

(1996), and the baseline risk premia that would apply in case of correct specification, depends

on the strength of misspecification compared to the strength of identification. The strength

of misspecification is reflected by the population equivalent of the J-statistic, while the

strength of identification is revealed by the, so-called, identification strength (IS) statistic.

The IS-statistic is a rank test statistic on the β matrix and is, by construction, always larger

than or equal to the J-statistic. The difference between these two measures is indicative of

whether we can interpret the pseudo-true value as a risk premium. When this difference is

small, the pseudo-true value basically results from the close to reduced rank value of the

β matrix, so it can be far off from the baseline risk premium under correct specification,

and does not reflect a risk premium. The sample equivalents of the J and IS statistics are

therefore important in gauging whether we can interpret risk premia estimates resulting from

empirical studies as genuine risk premia of interest.

For eight prominent empirical studies in asset pricing: Fama and French (1993), Jagan-

nathan and Wang (1996), Yogo (2006), Lettau and Ludvigson (2001), Savov (2011), Adrian,
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Etula, and Muir (2014), Kroencke (2017) and He, Kelly, and Manela (2017) and for all (14

billion+) one to six factor specifications resulting from the factor zoo of Feng, Giglio, and

Xiu (2020), we compute the J and IS statistics to illustrate the widespread co-existence

of misspecification and weak identification. The resulting J-statistics are mostly large and

significant, and if they are not, their smaller values are often induced by an accompanying

small value of the IS-statistic. The smallish J-statistic then basically results from a close

to reduced rank value of the β matrix, so the risk premia estimates do so as well and do not

reflect risk premia. When we do not incorporate the zero-β return or use more time series

observations, these identification issues become less problematic for some settings, such as

the three-factor model from Fama and French (1993), but remain for many others.

The conventional test statistics for conducting inference on risk premia, such as the FM

two-pass t-test, also with the Shanken (1992) correction of the standard errors, and the KRS

t-test, become unreliable in the presence of misspecification and/or weak identification. We

illustrate this by showing that the limit behavior of the FM two-pass estimator consists

of four components. Two of these components are negligible in case of strong factors and

correct specification, but lead to non-standard behavior in case of misspecification and/or

weak identification. It is also not possible to correct for them by using the bootstrap.

We therefore use the double robust Lagrange multiplier (DRLM) statistic from Kleibergen

and Zhan (2021) that provenly remains reliable in case of misspecification and/or weak

identification. For ease of exposition, we conduct a small simulation experiment to illustrate

the pros and cons of these different statistics for testing hypotheses on risk premia.

We illustrate the practical usage of the DRLM test by using the influential Fama and

French (1993) three-factor model and the conditional consumption capital asset pricing model

in Lettau and Ludvigson (2001). For the Fama and French (1993) three-factor model, we

show that for commonly used data sets, such as those resulting from Lettau and Ludvigson

(2001) and Lettau, Ludvigson, and Ma (2019), identification of the risk premia can be

problematic when incorporating the zero-β return because of the near constancy of the
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β’s associated with the market return. This identification issue is alleviated when using

more time series observations or by removing the zero-β return. The joint 95% confidence

set for the risk premia resulting from the DRLM test is then bounded (ellipsoid), while it

is unbounded in the direction of the risk premia on the market return when using fewer

observations and also incorporating the zero-β return. For the conditional capital asset

pricing model stemming from Lettau and Ludvigson (2001), the 95% confidence sets of the

risk premia resulting from the DRLM test are all unbounded, indicating limited information

in the data for precisely identifying the risk premia. The 95% confidence sets from the

DRLM test are, for all of these settings, fully in line with the J and IS statistics. When the

J and IS statistics are relatively close, we obtain unbounded 95% confidence sets from the

DRLM test, in contrast with the bounded ones resulting from the FM two-pass and KRS

t-tests which are then unreliable. Also the CUE differs considerably from the FM two-pass

estimator in this scenario. When the J and IS statistics are substantially apart, the results

from all these procedures are, as expected, rather similar, but the 95% (projected) confidence

sets from the DRLM test are notably narrower than those from the FM two-pass and KRS

t-tests. It all shows the importance of jointly using the J and IS statistics to gauge the

identification of risk premia while using the DRLM test to conduct inference on risk premia.

Overall, our study adds to an emerging body of research that aims to bring discipline

to the zoo of factors. Harvey, Liu, and Zhu (2016), for example, propose a higher hurdle

such as a t-statistic greater than 3.0 instead of the commonly used 1.96, since they are

concerned that significant t-statistics documented in the existing literature could result from

data mining. Unlike Harvey, Liu, and Zhu (2016) and the follow-up work, we do not provide

new hurdles of t-statistics; instead, we suggest the DRLM, J and IS statistics for gauging

the quality of risk factors. Feng, Giglio, and Xiu (2020) focus on whether a proposed risk

factor adds explanatory power beyond the existing zoo of factors, so their methodology

builds on a high-dimensional set of existing factors. In contrast, our approach is suitable

for evaluating the explanatory power of each factor model individually. In order to jointly
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address misspecification and no identification, Gospodinov, Kan, and Robotti (2014) propose

a model selection procedure to eliminate potentially useless factors. Unlike Gospodinov, Kan,

and Robotti (2014), our proposed DRLM test aims to infer risk premia regardless of whether

misspecification and weak identification are present.

Finally, we note that misspecification and weak identification are not limited to the

beta representation; see, e.g., Stock and Wright (2000) and Hansen and Lee (2021), who

have studied weak identification and misspecification in the generalized method of moments

framework, respectively. Given that asset pricing models are at best approximations of reality

while lots of risk factors have little explanatory power for asset returns, misspecification and

weak identification are a likely common threat to empirical asset pricing studies.

The rest of the paper is organized as follows. Section 2 starts with discussing the setup

of misspecification and the consequences it has for commonly used risk premia estimators.

It illustrates that the commonly used FM t-test is jeopardized by both misspecification and

weak identification, while the DRLM test takes both issues into account. Section 3 uses the

J and IS statistics to highlight the prevalence of misspecification and weak identification in

existing studies. Section 4 contains the empirical applications for conducting inference on

risk premia, while Section 5 concludes. Technical details are relegated to the Appendix.

2 Misspecification in the beta representation

Let Ri,t be the return on the i-th asset at time t, with i = 1, ..., N, and t = 1, ..., T. The beta

representation of expected returns models it as linear in the beta vector of factor loadings:

E(Ri,t) = β′iλF , (1)

where λF is the K × 1 vector of risk premia, and βi is the K × 1 vector of factor loadings:

βi = var(Ft)
−1cov(Ft, Ri,t), (2)
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with Ft the K × 1 vector of the specified risk factors, and K < N + 1. We can as well

represent the beta representation jointly for all assets by stacking the N equations of (1) to

get

µR = E(Rt) = βλF , (3)

with Rt = (R1,t, ..., RN,t)
′, β = (β1, ..., βN)′.

In both (1) and its misspecification extension provided later on (i.e., Equation (6)),

identification of λF relies on the quality of βi. For instance, if some of the specified risk factors

are just useless noise with zero betas, then λF is unidentified in the beta representation. This

reasoning generalizes to the full rank condition of the N ×K-dimensional matrix β, i.e. for

λF to be identified, β needs to have full rank. In the single factor case with K = 1, this

rank condition then just requires that β should be non-zero. If the full rank condition of β

is jeopardized by risk factors of poor quality, then λF is potentially weakly identified; see,

e.g., Kan and Zhang (1999), Kleibergen (2009), and Kan, Robotti, and Shanken (2013) for

a related discussion.

Remark 1: The zero-β, λ0 = 0, restriction. A scalar λ0 is often added to (3) so

E(Rt) = ιNλ0 + βλF , (4)

where ιN is the N × 1 vector of ones, and λ0 is the, so-called, zero-beta return, or the

expected return to an asset with no exposure to priced risks. Since our interest mainly lies

in λF , we opt to focus on (3) instead of (4) for ease of exposition. This treatment is related

to the λ0 = 0 restriction, so that (4) reduces to (3). The zero restriction can be achieved by

considering Rt as the excess return. Our discussion on (3), however, can be straightforwardly

extended to incorporate λ0. For example, the full rank condition of β for (3) extends to the

full rank condition of (ιN
... β) for (4) once λ0 is allowed for.

Remark 2: Incorporating the zero-β return. If λ0 = 0 is not assumed, we can still

use (3) to focus on λF by considering Rt as the return in deviation of a reference asset. To
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illustrate, let Rt = (R1,t . . .RN+1,t)
′ be the (N + 1)× 1 vector of returns such that

E(Rt) = ιN+1λ0 + BλF , (5)

where B is the (N + 1) × K-dimensional matrix of factor loadings. By subtracting the

(N + 1)-th asset return, we obtain the N × 1 vector Rt : Rt = (R1,t . . .RN,t)
′ − ιNRN+1,t

such that (5) implies (3), with Rt = JNRt, β = JNB, and JN = (IN
... −ιN). Thus, the

full rank condition of (ιN+1
... B) in (5) is equivalent to the full rank condition of β in (3).

Our subsequent analysis is invariant with respect to the choice of the (N + 1)-th asset; see

Kleibergen and Zhan (2020).

Remarks 1 and 2 above show that we can focus on (3) to illustrate inference on λF

regardless of whether a zero-β return is incorporated or not.1

2.1 Misspecification

Under misspecification, the expected returns are not fully explained by the specified β, so

µR 6= βλF . We therefore consider the correctly specified setting above as the baseline, and

introduce the pricing error ẽ in (6) to reflect misspecification. In particular, we assume the

pricing error to be potentially of a different order of magnitude:

µR = βλF + ẽ

ẽ = O(ẽ) · a

β = O(β) · b,

(6)

1It is worth noting that whether λ0 should be excluded already sheds light on misspecification and
weak identification in asset pricing. On the one hand, if λ0 is non-zero, then incorrectly imposing the zero
restriction leads to a misspecified condition. On the other hand, if λ0 is zero, then including the redundant
intercept term in (4) potentially weakens the identification of risk premia. In particular, when there is

little cross-sectional variation in β, including ιN causes near-multicollinearity in (ιN
... β), which will further

induce the weak identification of λF . Misspecification and weak identification are, however, more general
than whether to impose λ0 = 0 or not.
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where a is a normalized N -dimensional vector, so O(ẽ) reflects the magnitude of misspecifi-

cation; similarly, b is a normalized N×K-dimensional matrix, so O(β) reflects the magnitude

of identification.

The specification in (6) is without loss of generality and, for example, allows for misspec-

ification which is much smaller than the expected return resulting from the beta represen-

tation, or proportional to it which would result in case of weak identification. To capture

this, the magnitudes can be modelled to be proportional to the number of time series obser-

vations as is common in the literature on weak identification, for example, O(ẽ) = O(T cẽ),

O(β) = O(T cβ), cẽ and cβ are finite constants; see, e.g., Staiger and Stock (1997) and

Kleibergen (2009).

The misspecification is generic, so the difference from the baseline pricing error, ẽ, lies

both in the space spanned by β and outside of it. It captures the notion of the correctly

specified setting as a baseline, on top of which there is an unstructured misspecification

component. It resembles the estimation errors which the sample moment equations add to

the population moment equations. These errors are also unstructured, and lie both in the

space spanned by β and outside of it. The magnitude components, O(ẽ) and O(β), can then

further be such that the estimation errors in the sample moment equations are of the same

order of magnitude as the misspecification and identification strengths.

Next, we show that the relative magnitudes of misspecification and identification, O(ẽ)

and O(β), drive the identification of risk premia in the FM two-pass methodology and the

CUE. Since the misspecification J-statistic gauges O(ẽ) while the identification IS-statistic

reflectsO(β), the comparison of these two statistics plays a crucial role in our later discussion.

2.2 Population objective function and pseudo-true value

2.2.1 FM two-pass estimator

The population objective functions of different risk premia estimators are all quadratic forms

of the pricing error but weigh it differently. The population objective function of the FM
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two-pass estimator involves no weight function and is therefore just the quadratic form of

the pricing error:

QFM(l) = (µR − βl)′(µR − βl), (7)

having as its minimizer the, so-called, pseudo-true value of risk premia. Unlike the true

value in case of correct specification, the pseudo-true value denoted by λ∗F,FM does not set

the objective function to zero as µR = βλF + ẽ, with ẽ 6= 0 :

λ∗F,FM = arg minl∈RK QFM(l) = (β′β)
−1
β′µR. (8)

Using the specification of the expected asset returns in (6), the pseudo-true value becomes:

λ∗F,FM = λF + O(ẽ)
O(β)
· (b′b)−1b′a, (9)

where O(ẽ)
O(β)
· (b′b)−1b′a reflects the difference between the pseudo-true value λ∗F,FM and the

generic risk premia λF .

The specification of the pseudo-true value (9) therefore shows that it depends on the

strength of misspecification, O(ẽ), compared to the identification strength, O(β), unless

(b′b)−1b′a = 0 so the misspecification error is outside of the space spanned by β. For example,

when we use the specification from the weak instrument/factor literature: O(ẽ) = O(T cẽ) =

Ocẽ × T cẽ , O(β) = O(T cβ) = Ocβ × T cβ , with cẽ = cβ = −1
2
and Ocẽ , Ocβ non-zero finite

constants:

λ∗F,FM = λF +
Ocẽ
Ocβ
· (b′b)−1b′a, (10)

so depending on Ocẽ being larger or smaller than Ocβ , there can be a considerable difference

between λ∗F,FM and λF . Hence, it is important to compare the strength of misspecification

reflected by O(ẽ) to the strength of identification reflected by O(β), in order to gauge the

difference between λ∗F,FM and λF .

Under correct specification, the pricing error is zero at the true value of risk premia,
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and remains so when repackaging the assets. The minimizers of the population objective

functions underlying different estimators all therefore have the true value of risk premia as

their minimizer, and are all invariant to repackaging. Under the standard conditions, these

estimators are also consistent for the true value. This is no longer the case in misspecified

settings where the minimizers of the population objective functions associated with various

estimators (i.e. the pseudo-true values) differ, since there is no longer a value of risk premia

at which the population objective function is equal to zero.

Kandel and Stambaugh (1995) show that the pseudo-true value for the FM two-pass

estimator is not invariant to repackaging of the assets, while the population cross-section

generalized least squares (GLS) estimator is. The FM two-pass estimator provides a consis-

tent estimator of the pseudo-true value, which makes Kandel and Stambaugh (1995) skep-

tical about how much of interest the cross-section ordinary least squares (OLS) estimator,

or FM two-pass estimator, is under misspecification. They thus show a preference for the

cross-section GLS estimator.

Theorem 1. For A an invertible N × N matrix of weights, AιN = ιN with ιN the N -

dimensional vector of ones, the FM two-pass pseudo-true value for the orginal test assets,

Rt, does not equal that of the repackaged test assets, A×Rt.

Proof: See the Appendix and Kandel and Stambaugh (1995).

2.2.2 Continuous updating estimator

Kandel and Stambaugh (1995)’s analysis primarily concerns the population cross-section

OLS and GLS objective functions. These population objective functions treat the expected

asset returns, µR, and β’s as known while we replace them by estimators in the sample

objective functions. When extending these population objective functions to sample ones,

an important and empirically relevant issue occurs if the proximity of the true β’s to a reduced

rank value is comparable to its estimation error. The resulting risk premia estimators are
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then exposed to multi-collinearity issues and test statistics, like, for example, the FM two-

pass t-test and its misspecification robust extension by Kan, Robotti, and Shanken (2013),

are no longer reliable for conducting tests on the pseudo-true value of the FM two-pass

estimator. Test statistics which remain reliable for conducting tests on the pseudo-true

value do, however, exist and are based on the continuous updating estimator (CUE) of

Hansen, Heaton, and Yaron (1996). The population objective function of the CUE provides

an extension of the GLS population objective function by accounting for the estimation error

of all estimable components of the pricing error, i.e. µR and β :

QCUE(l) = (µR − βl)′
[
Var(
√
T (µ̂R − β̂l))

]−1

(µR − βl)

= 1
1+l′Q−1FF l

(µR − βl)′Ω−1(µR − βl),
(11)

where µ̂R = R̄ = 1
T

∑T
t=1 Rt, β̂ = 1

T

∑T
t=1 R̄tF̄

′
t

(
1
T

∑T
j=1 F̄jF̄

′
j

)−1

, R̄t = Rt− R̄, F̄t = Ft− F̄ ,

F̄ = 1
T

∑T
t=1 Ft. The specification in the last line of (11) is for a setting of i.i.d. data, so

Ω =Var(Rt − βFt) and QFF =Var(Ft). The GLS population objective function results if we

remove the first part of the expression on the bottom line of (11).

The CUE population objective function normalizes the pricing error, so it is invariant

under repackaging and transformations of the factors. The (normalized) sample value of the

pricing error used in (11) has unit variance, which implies that, under mild conditions (see,

e.g., Shanken (1992)), the sample CUE objective function has a non-central χ2 distribution

in large samples. The pseudo-true value associated with the CUE then results as

λ∗F,CUE = arg minl∈RK QCUE(l), (12)

which is also invariant to repackaging.

The population CUE objective function is multi-modal, and the pseudo-true value re-

sults from the smallest mode. For example, in an i.i.d. setting, it results from an eigenvalue
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problem so the number of modes equals the number of eigenvalues/characteristic roots.2 To

guarantee that the characteristic root from which the pseudo-true value results, identifies

risk premia, the identification strength has to exceed the misspecification strength. These

identification properties result because the CUE population objective function is the opti-

mized function in the stepwise optimization of a generalized reduced rank objective function,

which imposes a reduced rank value on the N × (K + 1) matrix
(
µR
... β
)
, see Kleibergen

(2007) and Kleibergen and Zhan (2021):

QCUE(l) = minB∈RN×K QCUE(l, B)

QCUE(l, B) =

[
vec
((

µR
... β
)
−B

(
l
... IK

))]′ [
Var

(√
T

(
µ̂′
... vec(β̂)′

)′)]−1

[
vec
((

µR
... β
)
−B

(
l
... IK

))]
= tr

[
Q−1
FF

((
µR
... β
)
−B

(
l
... IK

))′
Ω−1

((
µR
... β
)
−B

(
l
... IK

))]
(13)

where the expression on the last line is for the setting of i.i.d. data.3 The second expression

in (13), QCUE(l, B), is a normalized distance measure between the N × (K + 1) matrix(
µR
... β
)
, which is at most of rank K+1, and the N× (K+1) matrix B

(
l
... IK

)
, which is

at most of rank K.4 The sample analog of the CUE population objective function is therefore

a rank test on
(
µR
... β
)
. Its minimal value is the J-statistic for misspecification.

Since the pseudo-true value of the CUE results from a generic rank test on
(
µR
... β
)
,

it does not necessarily represent risk premia when there is misspecification. Consider, for

example, a setting where the strength of misspecification, O(ẽ), is considerably larger than

2For the setting of i.i.d. data, a closed-form expression of the pseudo-true value can be provided
as resulting from the eigenvector associated with the smallest root of the characteristic polynomial∣∣∣∣τ ( 1 0

0 Q−1FF

)
−
(
µR β

)′
Ω−1

(
µR β

)∣∣∣∣ = 0 by specifying that eigenvector as c
(

1
−λ∗F,CUE

)
with c

a scalar.
3vec(A) is the column vectorization of a matrix A that results from stacking its columns, so vec(A) =

(a′1 . . . a
′
m)′ for A = (a1 . . . am). tr(A) is the trace, or sum of its diagonal elements, of the square matrix A.

4The rank of B
(
l
... IK

)
is at most K because B is an N×K matrix and

(
l
... IK

)
a K× (K+1) matrix,

so the ranks of both of these are at most K.
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the strength of identification, O(β), which is tiny. The minimization over (l, B) then leads

to a tiny value of B and a very large value of l that does not reflect the generic risk premia.

This reasoning is thus also in line with (9) for the FM two-pass approach.

The above point is further illustrated in Figure 1. It shows, for a single factor setting,

the contour lines of the pseudo-true values of the FM two-pass estimator and the CUE

in deviation from the risk premium in case of correct specification, as a function of the

misspecification and identification strengths. Both for FM two-pass (left panel) and CUE

(right panel), Figure 1 shows that the pseudo-true values deviate considerably from the

baseline risk premium when the misspecification strength exceeds the identification strength.

The pseudo-true value of CUE then no longer represents a risk premium, because the closest

proximity of
(
µR
... β
)
from a reduced rank value results mainly from the small value of β,

and much less so from the combination of µR and β. It is therefore important to be able to

diagnose if the pseudo-true value results from such a setting.

Figure 1: Contour lines that show the deviation of pseudo-true values of FM and CUE

from the baseline risk premium in case of correct specification as a function of the

strengths of misspecification ẽ and identification β.
FM

0.5

0.5

0.5

0.5

1

1

1

1

1

2

2

2

2

2

3

3

3

3

3

10
10

10
10

25
25

25
25

10
0

10
0

0 1 2 3 4 5
0

1

2

3

4

5 CUE

0.5

0.5

0.5

0.5

1

1

1

1

1

2

2

2

2

2

3

3

3

3

3

10
10

10
10

25
25

25
25

10
0

10
0

10
0

0 1 2 3 4 5
0

1

2

3

4

5

Notes: The pseudo-true values of FM and CUE are defined in (8) and (12), respectively. The
baseline risk premium is set to 2, so the contour lines show the deviation of pseudo-true values
from 2. The parameters used for Figure 1 are calibrated to the data from Kroencke (2017). The
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2.3 IS-statistic versus J-statistic

To obtain a diagnostic for interpreting the pseudo-true value as a risk premium, we use that

the CUE population objective function evaluated at the pseudo-true value equals a rank test

on (µR
... β) as shown by (13), which is also the population equivalent of a J-statistic:

J = QCUE(λ∗F,CUE). (14)

It is then always smaller than or equal to an appropriately specified rank test statistic

conducted on any sub-matrix of
(
µR
... β
)
. An example of a rank test on a sub-matrix of

(µR
... β) is a rank test on just β, whose sample analog is typically used to test for the

identification of the risk premia under correct specification; see, e.g., Cragg and Donald

(1997), Kleibergen and Paap (2006) and Robin and Smith (2000). This rank test statistic is

thus always larger than or equal to the CUE objective function evaluated at the pseudo-true

value (i.e. the J-statistic in (14)), and provides a measure of the identification strength of

λF , see Kleibergen and Zhan (2021):

IS = mind∈R(K−1) Qβ(d)

Qβ(d) =
(

1
−d
)′
β′
[((

1
−d
)
⊗ IN

)′
Var

(√
Tvec(β̂)

) ((
1
−d
)
⊗ IN

)]−1

β
(

1
−d
)

= minG∈RN×(K−1) Qp,r(d,G)

Qp,r(d,G) =

[
vec
(
β −G

(
d
... IK−1

))]′ [
Var

(√
Tvec(β̂)

)]−1
[
vec
(
β −G

(
d
... IK−1

))]
.

(15)

When the J misspecification measure is close to the IS identification measure, the pseudo-

true value basically results from a close to reduced rank value of β. It implies that the pseudo-

true value λ∗F,CUE is very large and does not represent risk premia. Hence, only when the J

misspecification measure is considerably less than the IS identification strength measure does

the pseudo-true value represent risk premia. It shows that when misspecification is present,

the identification of risk premia is no longer just reflected by the rank strength value of β, as
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is the case under correct specification, but by the difference between a measure of the degree

of misspecification and a measure of the rank strength of β. In case of correct specification,

the misspecification measure equals zero, so the identification then solely results from the

rank value of β, but not so when misspecification is present. The cut-off for identification is

when the measures of misspecification and rank strength of β are equal in which case λF is

not identified, while it can be identified as risk premia when the latter exceeds the former.

To summarize, the sample analog of the IS identification measure is a rank test statistic

on β, while the sample analog of the minimal value of the population CUE objective function

is the J-statistic for misspecification. It is thus important to compare the IS-statistic on

β with the J-statistic for misspecification. When using aligning specifications for the J-

statistic and the IS-statistic on β, the former is always less than or equal to the latter.

Close values, however, indicate an issue with identifying risk premia. The estimated values

of the risk premia are then also typically very large, which sheds further doubt on whether

they can be interpreted as risk premia.5

2.4 Tests of risk premia

To conduct inference on the pseudo-true values of risk premia, it is important to have tests

that remain reliable for a wide range of values of the misspecification and identification

strengths. We show that this does not hold for the FM t-test and its misspecification robust

extension by Kan, Robotti, and Shanken (2013), which are size distorted when the identifi-

cation strength of risk premia is minor. We conduct a small simulation exercise to highlight

this sensitivity. Thereafter we state the double robust Lagrange multiplier (DRLM) test

from Kleibergen and Zhan (2021), which is size correct for all settings of the misspecification

and identification strengths.

5It is important to note that we cannot test for the equality of the J-test and rank test for β, since
they involve the same estimators. For example, in case β is of reduced rank while the expected returns,
µR, are different from zero, the population values of these two test statistics would be the same, and the
joint sampling distribution of their estimators would be degenerate, so we cannot establish a test for their
equality.
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2.4.1 Large sample behavior of t-tests based on the FM estimator under mis-

specification and weak identification

We use a single factor setting, so K = 1, to show that the FM two-pass t-test and its

misspecification robust extension by Kan, Robotti, and Shanken (2013), for conducting

inference on the FM two-pass pseudo-true value become unreliable, when the value of the

β-matrix is close to rank deficient. For the single factor setting, a close to rank deficient

value of β implies that β is close to zero. Because of the commonality of misspecification

paired with weak identification, we construct the large sample behavior of the FM two-pass

estimator for a setting where both the β’s and the misspecification are small. We model this

using the weak factor/small β and misspecification assumption (6) and (10), and further

postulate that both β and the misspecification µR − βλF are drifting to zero at rate 1/
√
T :

β = βT = b√
T
, µR − βλF = a√

T
, λ∗F,FM = λF + (b′b)−1b′a, (16)

with b and a N -dimensional vectors of constants. The small β assumption (16) is common in

the weak identification literature; see, e.g., Staiger and Stock (1997), Kleibergen (2005, 2009)

and Kleibergen and Zhan (2020, 2021). It leads to the small values of the F -statistic testing

the joint significance of the β’s that we often observe; see Kleibergen and Zhan (2015). The

small misspecification assumption further accommodates the small but significant values of

the J-statistic that are regularly seen.

Theorem 2: For i.i.d. data and under the weak β and misspecification assumption (16),

the large sample distribution of the FM two-pass estimator, λ̂F = (β̂
′
β̂)−1β̂

′
µ̂R, consists of

four components:

λ̂F →
d

λ∗F,FM︸ ︷︷ ︸
1

+
ψ′µ(b+ ψβ)

(b+ ψβ)′(b+ ψβ)︸ ︷︷ ︸
2

− λ∗F,FM
ψ′β(b+ ψβ)

(b+ ψβ)′(b+ ψβ)︸ ︷︷ ︸
3

+
e′ψβ

(b+ ψβ)′(b+ ψβ)︸ ︷︷ ︸
4

,
(17)
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with e = a − b(b′b)−1b′a; ψµ and ψβ are independent normally distributed N -dimensional

random vectors with mean zero and covariance matrices var(Rt) = Ω + βQβ′ and ΩQ−1,

Ω =Var(Rt − βFt) and QFF =Var(Ft).

Proof: See the Appendix.

The four different components of the large sample behavior of the FM two-pass estimator

in Theorem 2 are characterized by:

1. The object of interest: λ∗F,FM , the pseudo-true value of the FM two-pass estimator.

2.
ψ′µ(b+ψβ)

(b+ψβ)′(b+ψβ)
: Under i.i.d. data and assumption (16),

√
T β̂ →

d
b + ψβ and

√
T µ̂R →

d

e+ bλ∗F,FM +ψµ, so it shows the large sample behavior of
(µ̂R−µR)′β̂

β̂
′
β̂

, which is such that
ψ′µ(b+ψβ)√

(b+ψβ)′(b+ψβ)
∼ N(0,Ω + βQβ′), since ψµ is independent of ψβ.

3. −λ∗F,FM
ψ′β(b+ψβ)

(b+ψβ)′(b+ψβ)
: Since the ψβ elements in the numerator are positively correlated,

it creates a negative bias in the FM two-pass estimator for small values of b. It also

implies that the large sample distribution of the FM two-pass estimator is not a normal

one for such values of b.When b is much larger than ψβ, so we are in a setting of sizeable

β’s, ψβ becomes negligible compared to b in the (b+ ψβ) elements. This is the setting

covered by Shanken (1992), who provides the correction for the standard errors of

the FM two-pass estimator to incorporate the contribution of this component for the

variance of the FM two-pass estimator.

4.
e′ψβ

(b+ψβ)′(b+ψβ)
: It appears in the large sample distribution of the FM two-pass estimator

because of misspecification. When e = 0 or the identification strength, b′b, is much

larger than the length of e, or the amount of misspecification, it has little effect on the

large sample distribution of the FM two-pass estimator. Because of the dependence

between the ψβ elements in the numerator and denominator, this component only has

a normal distribution for large values of b, so ψβ becomes negligible in the (b + ψβ)

elements. This is the setting covered by Kan, Robotti, and Shanken (2013), who

provide a correction of the standard errors to incorporate this component.
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The third and fourth components lead to a large sample distribution for the FM two-pass

estimator which is not a normal one for the empirically relevant setting of small values of b.

Test statistics based on the FM two-pass estimator, like the FM t-test and the KRS t-test,

therefore become size distorted for such small values. To illustrate this, Figure 2 shows the

simulated rejection frequencies of 5% significance FM and KRS t-tests on λ∗F,FM for a range

of values of the misspecification and identification strengths.6 Figure 2.1 shows the rejection

frequencies for H0 : λ∗F,FM = 0, and Figure 2.2 is for λ∗F,FM corresponding with the values

resulting from Figure 1.

Figure 2: Rejection frequencies of 5% significance FM and KRS t-tests

for varying identification strengths β and misspecification ẽ.

0
0.1
0.2

0

0.3
0.4
0.5
0.6

S
iz

e
 o

f 
F

M
 t

0.7
0.8
0.9

1

0.5 543211 0

0
0.1
0.2

0

0.3
0.4
0.5
0.6

S
iz

e
 o

f 
K

R
S

 t

0.7
0.8
0.9

1

0.5 543211 0

Figure 2.1: H0 : λ∗F,FM = 0
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Figure 2.2: H0 : λ∗F,FM results from Figure 1

6Throughout the paper, simulated data are generated from the linear factor model using parameters
calibrated to the data from Kroencke (2017).
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Figure 2.1 shows that the FM t-test and the KRS t-test are conservative or correctly sized

when testing H0 : λ∗F,FM = 0 and there is no misspecification so ẽ = 0. For increasing values

of ẽ, however, the FM t-test and the KRS t-test over-reject for small values of β, i.e. the

rejection frequencies are larger than the nominal 5%. For the FM t-test, this over-rejection

also extends to larger values of β.

For testing H0 : λ∗F,FM corresponding with the pseudo-true values resulting from Figure 1,

Figure 2.2 shows that the FM t-test and the KRS t-test severely over-reject for small values

of β which are less than ẽ. When β approaches zero, the rejection frequencies are even equal

to one, which is in line with Kan and Zhang (1999).

2.4.2 The DRLM test which remains size correct under misspecification and

weak identification

The decomposition in Theorem 2 can also be conducted for the GLS risk premia estimator,

so test statistics based on it, such as the GLS t-test, become similarly size distorted. We

therefore use a statistic based on the CUE: the DRLM statistic proposed in Kleibergen

and Zhan (2021), whose asymptotic distribution is bounded by the χ2
K distribution. When

using appropriate critical values from the χ2
K distribution, the DRLM test of hypotheses

specified on the pseudo-true value of the CUE remains size correct for general levels of

misspecification and identification. In the Appendix, we state the DRLM statistic, and

provide a brief discussion of its implementation.

Figure 3 presents the rejection frequencies of a 5% significance DRLM test of H0 :

λ∗F,CUE = 0. We note that, unlike the large sample distributions of the FM and KRS t-

tests, the limiting distributions of the statistics underlying the DRLM test do not depend on

the tested parameter or the covariance matrices Ω and QFF . In contrast with Figure 2 for

the simulated sizes of the FM and KRS t-tests, Figure 3 shows that the DRLM test is size

correct (i.e. the rejection frequencies do not exceed the nominal 5%), and is conservative for

combined small identification and misspecification strengths.
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Figure 3: Rejection frequencies of the 5% significance DRLM test of H0 : λ∗F,CUE = 0

for varying identification strengths β and misspecification ẽ.
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2.5 Power comparison

We briefly illustrate the power of the FM and KRS t-tests compared to the DRLM test. A

more extensive power study of the DRLM test is conducted in Kleibergen and Zhan (2021).

We first show the power for a correct specification, so all the aforementioned tests target the

same value of the risk premium, while there is also strong identification. Thus, we have the

ideal setting that β is sizeable while ẽ = 0 in the data generation process. All the examined

tests are therefore size correct in Figure 4a-b at the hypothesized value, i.e. all the rejection

frequencies are near the nominal level of 5% when the distance to the tested risk premium is

zero. Since there is no misspecification, the power curves of FM t (dotted black) and KRS t

(dashed green) largely overlap in Figure 4a. The comparison of Figure 4a and 4b, however,

also shows that the DRLM test can have more power than FM and KRS t-tests. This results

since the DRLM test is based on the GLS framework, while the FM and KRS t-tests for

Figure 4 are based on OLS.

21



Figure 4: Power comparison of FM, KRS t-tests and DRLM at the 5% level.

a-b: Correct specification, strong identification; c-d: Misspecification, weak identification.
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(c) FM t (black) and KRS t (green) (d) DRLM

In contrast with Figure 4a-b, we allow for misspecification as well as weak identification in

Figure 4c-d. This is achieved by considering smallish β and nonzero ẽ in the data generation

process. For this scenario, Figure 4c shows that the FM and KRS t-tests are no longer size

correct, while their power curves substantially differ from those in Figure 4a. In contrast,

the DRLM test, which involves the power improvement rule mentioned in the Appendix,

remains size correct in Figure 4d.

Overall, Figure 4 illustrates that it is appealing to use the DRLM test for conducting

inference on risk premia. In contrast, the conventional FM t-test, together with the KRS
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t-test, is jeopardized by joint misspecification and weak identification, both of which are

prevalent in empirical studies as we show next.

3 Diagnostic statistics

Before we turn to empirical applications of the tests on the risk premia, we first apply the

diagnostic statistics which help to gauge whether we can interpret the risk premia accordingly.

The IS-statistic, which tests for a reduced rank value of β, is commonly used to test for

identification of the risk premia in correctly specified settings. In misspecified settings, it is,

however, no longer just the IS-statistic which governs the identification and interpretation

of the pseudo-true value of the risk premia, but its difference with the J-statistic, which

equals the minimal value of the sample CUE objective function. This is, for example, shown

by the deviation of the FM two-pass pseudo-true value in (9) from its counterpart under

correct specification, and further illustrated in Figure 1. The J and IS statistics have well

established limiting distributions under their hypotheses of interest, which are χ2
N−K for the

J-statistic under correct specification, and χ2
N−K+1 for the IS-statistic under a reduced rank

β matrix; see the Appendix for their explicit expressions. We are, however, mainly interested

in these statistics because of the inequality between them, J-statistic ≤ IS-statistic, and

because a close proximity between these two statistics shows that the pseudo-true value does

not identify risk premia as discussed in Section 2. We therefore compute these two statistics

first for eight well known specifications of the linear asset pricing model, and second for the

specifications resulting from the factor zoo of Feng, Giglio, and Xiu (2020).

3.1 Empirical identification of risk premia

Figure 5 shows a scatter plot of the J and IS statistics for eight well known specifications

of the linear asset pricing model: Fama and French (1993), Jagannathan and Wang (1996),

Yogo (2006), Lettau and Ludvigson (2001), Savov (2011), Adrian, Etula, and Muir (2014),
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Kroencke (2017) and He, Kelly, and Manela (2017).7 In line with common practice, we

incorporate the zero-β return, λ0, while the factors used in the eight different specifications

are:

1. Fama and French (1993), the prominent three, so-called Fama-French, factors: the

market return Rm, SMB (small minus big), and HML (high minus low). We use the

quarterly data from Lettau, Ludvigson, and Ma (2019) over 1963Q3 to 2013Q4, so

T = 202, for the three factors, and the twenty-five size and book-to-market sorted

portfolios as test assets.

2. Jagannathan andWang (1996), three factors: Rm, corporate bond yield spread, and per

capita labor income growth. We use their monthly data from July 1963 to December

1990 so T = 330, while one hundred size and beta sorted portfolios are used as test

assets.

3. Yogo (2006), three factors: Rm, durable and nondurable consumption growth. The

sample period is from 1951Q1 to 2001Q4 so T = 204, with twenty-five size and book-

to-market sorted portfolios as test assets.

4. Lettau and Ludvigson (2001), three factors: consumption-wealth ratio, consumption

growth, and their interaction. We use the quarterly data from 1963Q3 to 1998Q3 so

T = 141, while the test assets are the twenty-five Fama-French portfolios.

5. Savov (2011), one factor: garbage growth. We use the same annual data, 1960 - 2006,

while the test assets are the twenty-five Fama-French portfolios augmented by the ten

industry portfolios, as suggested by Lewellen, Nagel, and Shanken (2010).

6. Adrian, Etula, and Muir (2014), one factor: leverage. Following Lettau, Ludvigson,

7We thank the authors of Jagannathan and Wang (1996), Yogo (2006), Lettau and Ludvigson (2001),
Savov (2011), and Kroencke (2017) for sharing their data. For the models of Fama and French (1993),
Adrian, Etula, and Muir (2014), and He, Kelly, and Manela (2017), we use the extended data of risk factors
and test assets as in Lettau, Ludvigson, and Ma (2019).
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and Ma (2019), we extend the time period to 1963Q3 - 2013Q4, and use twenty-five

size and book-to-market sorted portfolios as test assets.

7. Kroencke (2017), one factor: unfiltered annual consumption growth. We use the post-

war 1960 - 2014 sample from Kroencke (2017), while thirty portfolios, sorted by size,

value and investment alongside the market portfolio, are used as test assets.

8. He, Kelly, and Manela (2017), two factors: banking equity-capital ratio and Rm. The

data are also taken from Lettau, Ludvigson, and Ma (2019) for the period 1963Q3 -

2013Q4, and twenty-five size and book-to-market sorted portfolios are the test assets.

Figure 5: Scatter plot of J and IS statistics for different specifications
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Notes: The zero-β return is incorporated. We revisit eight models and their associated factors.
Fama and French (1993): Rm, SMB, and HML; Jagannathan and Wang (1996): Rm, corporate
bond yield spread, and per capita labor income growth; Yogo (2006): Rm, durable and nondurable
consumption growth; Lettau and Ludvigson (2001): consumption growth, consumption wealth ratio
and their interaction; Savov (2011): garbage growth; Adrian, Etula, and Muir(2014): leverage;
Kroencke (2017): unfiltered consumption growth; He, Kelly, and Manela (2017): Rm and the
banking equity-capital ratio. For detailed descriptions of risk factors and test assets, we refer to
the published articles.
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The plotted points in Figure 5 roughly exhibit two patterns, which we illustrate by

using different colors (red and blue). For Fama and French (1993), Jagannathan and Wang

(1996), Savov (2011) and Kroencke (2017), we observe both large J and IS statistics, so

the corresponding models appear to be misspecified. In contrast, for Lettau and Ludvigson

(2001), Yogo (2006), Adrian, Etula, and Muir (2014), and He, Kelly, and Manela (2017), we

encounter small J and IS statistics, so these models are likely to be weakly identified.

The IS-statistics for the first set of four specifications are large and mostly significant

but they are also close to their respective J-statistics, which is revealed by the proximity of

these points to the 45-degree line. We can therefore not conclude from these IS-statistics

that we identify risk premia. The most likely setting for identification is for Fama and French

(1993), whose (IS, J) point is most distant from the 45-degree line.

For the second set of four points, the J-statistics are small and mostly insignificant,

indicating that the models might not be misspecified. However, their corresponding IS-

statistics are also similarly small, which implies that the low values of the J-statistics are

induced by the low values of the IS-statistics, since J-statistics are necessarily exceeded by

IS-statistics. Hence, we cannot identify risk premia for these specifications.

Table 1: J and IS statistics

Panel A contains the J and IS statistics plotted in Figure 5, for which the zero-β return is
incorporated. In Panel B, the zero-β return is removed so λ0 = 0. Significance at 1%, ***;
5%, **; 10%, *.

(A) Impose λ0 = 0: No (B) Impose λ0 = 0: Yes
J-statistic IS-statistic J-statistic IS-statistic

Fama and French (1993) 59.34*** 106.81*** 87.47*** 974.39***
Jagannathan and Wang (1996) 75.07 103.54 86.46 103.56
Lettau and Ludvigson (2001) 31.11* 31.75* 37.15** 40.90**
Yogo (2006) 17.14 17.34 19.42 19.60
Savov (2011) 134.27*** 140.68*** 268.60*** 296.78***
Adrian, Etula, and Muir (2014) 28.42 31.97 30.41 42.03**
Kroencke (2017) 59.84*** 78.47*** 60.03*** 102.77***
He, Kelly, and Manela (2017) 35.32** 35.88** 44.44*** 59.74***
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3.2 Removing the zero-β return

Panel A in Table 1 states the values of the J and IS statistics plotted in Figure 5. Panel

B states these statistics when the zero-β return is removed, so λ0 = 0. All statistics in

Panel B therefore exceed their corresponding counterparts in Panel A. Removing the zero-β

return thus increases both the misspecification and identification. The misspecification has

increased since we removed a parameter from the pricing equation, while identification has

improved since removing the zero-β return allows to identify risk premia when the β’s are

constant over the assets, which was not so when the zero-β return was included. For some

of the specifications, the increase of the J and IS statistics is disproportional. This is most

notably so for the Fama and French (1993) specification, where the IS-statistic increases

ninefold while the J-statistic does so only minorly. For the other specifications, the increase

of the IS-statistic typically exceeds that of the J-statistic, but not by an amount which

makes it clear that the risk premia become well identified as is the case for the Fama and

French (1993) specification. For more than half of the specifications, the removal of the

zero-β return has therefore little effect on the identification of risk premia.

We note that the J and IS statistics presented in Figure 5 are just for illustrative pur-

poses. We do not aim to use these statistics to strictly reject or favor any model in Figure

5, since there are many other issues involved. These issues include, for example, that the

models used for Figure 5 contain various numbers of risk factors; in addition, their corre-

sponding empirical studies have used non-identical test assets; furthermore, the considered

time periods and frequencies also vary to a large extent. To address these concerns, we next

use the factor zoo data from Feng, Giglio, and Xiu (2020) to investigate misspecification and

weak identification in a more systematic manner.

3.3 Misspecification and weak identification in the factor zoo

How prevalent are misspecification and weak identification in empirical asset pricing studies?

With this question in mind, we extend our analysis to the factor zoo collected by Feng, Giglio,
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and Xiu (2020), which covers one hundred and fifty risk factors from July 1976 to December

2017, so T = 498. We use the twenty-five Fama and French size and book-to-market portfolios

as test assets, which have been widely used as the default choice.

3.3.1 Prevalence of misspecification and weak identification

In line with existing studies, we evaluate all possible specifications of linear factor models

resulting from the factor zoo with K = 1, 2, 3, 4, 5 and 6 factors. For K = 1, we therefore

consider C1
150 = 150 single factor models. Similarly, we examine C2

150 = 11, 175 (= 150 ×

149/2) two-factor models; C3
150 = 551, 300 three-factor models; C4

150 = 20, 260, 275 four-

factor models; C5
150 = 591, 600, 030 five-factor models; and C6

150 = 14, 297, 000, 725 six-factor

models.8 For each model, we compute its J and IS statistics while incorporating the zero-β

return.

Table 2 states the frequencies of, at the 5% level, significant values of the J-statistics, and

insignificant values of the IS-statistics, signaling misspecification and weak identification,

respectively. Table 2 shows that, when we increase the number of factors, the resulting

factor models tend to be less misspecified, while becoming weaker identified. This results

naturally since on the one hand, adding more factors helps to better explain asset returns, so

the resulting models are less likely to be rendered misspecified; while on the other hand, since

some factors could be closely related to others, including more factors decreases the distance

of the β matrix from a reduced rank value, which leads to weaker identified models. We note

that the reported percentages in Table 2 likely understate the severeness of misspecification,

because the misspecification J-statistic tends to be insignificant under weak identification,

as we have discussed for Figure 5.

Overall, Table 2 shows that the majority of the examined models seem to suffer from

misspecification and/or weak identification. Apparently, there is also a trade-offbetween the

reported percentages of misspecification and weak identification in Table 2. We previously

8We used high-performance computers to conduct this study.

28



have, however, shown that we cannot analyze the J and IS statistics in isolation, as in Table

2, to determine whether risk premia are identified, so we next analyze them jointly.

Table 2: Prevalence of misspecification and weak identification

The data of one hundred and fifty risk factors are taken from Feng, Giglio, and Xiu (2020).
The test assets are the twenty-five Fama and French size and book-to-market portfolios from
July 1976 to December 2017. Models are deemed misspecified at the 5% level, if the p-value
of the J-statistic does not exceed 5%. Models are deemed weakly identified at the 5% level,
if the p-value of the IS-statistic exceeds 5%. The λ0 = 0 restriction is not imposed.

Number of Factors, K
1 2 3 4 5 6

Number of Models (CK150) 150 11175 551300 20260275 591600030 14297000725

Misspecified (%) 98.67% 95.84% 87.11% 68.65% 43.58% 18.37%

Weakly Identified (%) 0.67% 2.08% 5.49% 15.40% 33.35% 50.28%

Figure 6: Joint empirical density of J and IS statistics

over the specifications with K factors from the factor zoo.
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Figure 7: Contour lines of the joint empirical density of J and IS statistics

over the specifications with K factors from the factor zoo.
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3.3.2 Joint empirical density of J and IS statistics resulting from the different

specifications

Because the J and IS statistics jointly indicate if the risk premia are identified, the six

pictures in Figure 6 show the bivariate empirical density functions (histograms) of the J and

IS statistics resulting from all the specifications having one to six factors presented in Table

2. Figure 7 shows the contour lines of these six empirical density functions.

When K = 1, Figures 6a and 7a show that almost all single factor models are associated

with large significant (at the 5% level) J-statistics. This is as expected, since it is unlikely

that a single factor explains all the variation in the cross-section of expected asset returns.

Specifically, 148 out of 150 single factor models are deemed misspecified by their significant J-

statistics at the 5% level, leading to 148/150 ≈ 98.67% in Table 2. The remaining two single

factor models have small J-statistics (see the bottom left of Figure 6a), but their IS-statistics
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are also small. One of these two IS-statistics is even insignificant at the 5% level, leading

to the 1/150 ≈ 0.67% for weak identification in Table 2, while the other is insignificant at

the 1% level. Thus, these two factors are of poor quality, and their resulting single factor

models should also be deemed misspecified. The J-statistic fails to signal misspecification

for these two models, because the small IS-statistic forces it to be very small, given that

the J-statistic is less than or equal to the IS-statistic. Joint misspecification and weak

identification therefore occur in these two single factor models.

When we increase the number of factors so K = 2, 3, 4, 5 and 6, Figures 6b-f and 7b-f

show two clear patterns:

1. The J and IS statistics are overall decreasing.

2. The empirical bivariate density of the J and IS statistics moves closer to the 45-degree

line.

While Table 2 shows that for K = 6, more than 50% of the examined specifications are

weakly identified, the second pattern listed above implies that many more specifications are

weakly identified, and similarly so for specifications involving fewer factors. This is analogous

to what we observed for Figure 5. Taken all together, it all shows that joint misspecification

and weak identification is a common problem that needs to be addressed.

Encouragingly, Figures 6 and 7 also show that there are specifications for which the (IS ,

J) combination is distant from the 45-degree line. For these specifications, the IS-statistics

exceed their J-statistics to a larger extent when compared to those in Figure 5. From a

purely statistical point of view, the specifications with J much smaller than IS are worth

investigation, since their pricing errors tend to be small while the risk premia are likely to

be well identified. It would be interesting if researchers could further relate these models

to economic theories. Yet given the large number of such models as shown by Figure 6, we

leave them for future research.
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4 Application

We show the importance of J, IS and DRLM statistics for applied asset pricing by revisiting

two prominent examples: the Fama and French (1993) model and the conditional consump-

tion capital asset pricing model from Lettau and Ludvigson (2001). Table 3 therefore reports

the estimation results for the three-factor specification used in Lettau and Ludvigson (2001),

and for Fama and French (1993) using three different data sets. Accordingly, Figure 8 shows

the joint 95% confidence sets resulting from DRLM for all four specifications in Table 3.

4.1 Fama and French (1993)

The Fama and French (1993) three-factor model has been widely used as a benchmark in the

asset pricing literature; see, e.g., Lettau and Ludvigson (2001) and Lettau, Ludvigson, and

Ma (2019). In line with the large, significant (at the 1% level) J-statistics in Table 3, the

Fama and French (1993) three-factor model is well acknowledged to be misspecified. Yet this

model appears able to explain the cross-section of asset returns, as reflected by the reported

large cross-sectional R2.

Using quarterly data from Lettau and Ludvigson (2001) and Lettau, Ludvigson, and Ma

(2019), the two-pass procedure of Fama and MacBeth (1973) suggests that the risk premia

on SMB and HML are both positive; in contrast, the point estimate of the market premium is

negative in Lettau, Ludvigson, and Ma (2019), but positive in Lettau and Ludvigson (2001);

see Panel A versus Panel B in Table 3. Because Lettau, Ludvigson, and Ma (2019) use

longer time series than Lettau and Ludvigson (2001), its IS-statistic is considerably larger

(106.81 vs. 47.01), reflecting that more information is available for identification in Lettau,

Ludvigson, and Ma (2019). On the other hand, the larger J-statistic for Lettau, Ludvigson,

and Ma (2019) (59.34 vs. 45.38) implies more severe misspecification. A question thus arises:

how do we reconcile the seemingly conflicting findings in Lettau, Ludvigson, and Ma (2019)

and Lettau and Ludvigson (2001) for Rm in the Fama and French (1993) three-factor model?
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Table 3: Risk Premia λF for the three-factor models of Fama and French (1993)
and Lettau and Ludvigson (2001)

The test assets are the 25 Fama-French portfolios from 1963Q3 - 2013Q4 used in Lettau,
Ludvigson, and Ma (2019) for Panel A, from 1963Q3 - 1998Q3 used in Lettau and Ludvigson
(2001) for Panel B and Panel C, and from July 1963 - June 2021 downloaded from French’s
website for Panel D, respectively. The estimates of λF result from the Fama and MacBeth
(1973) two-pass procedure, and are identical to those reported in Lettau, Ludvigson, and
Ma (2019) and Lettau and Ludvigson (2001) when using the same data. The presented
FM t-statistic and its resulting 95% confidence interval (C.I.) of risk premia do not use
the Shanken (1992) correction, while Shanken t does. The KRS t is computed by using the
programs provided by Kan, Robotti, and Shanken (2013). The zero-β return is incorporated.

A: Lettau, Ludvigson, and Ma (2019) B: Lettau and Ludvigson (2001)
Rm SMB HML Rm SMB HML

λF,FM -1.96 0.70 1.35 1.33 0.47 1.46
λF,CUE -4.15 0.82 0.86 -11.26 0.69 1.52

FM t -1.72 1.67 2.64 0.83 0.94 3.24
95% C.I. (-4.18, 0.27) (-0.12, 1.52) (0.35, 2.35) (-1.81, 4.46) (-0.51, 1.45) (0.58, 2.34)
Shanken t -1.64 1.66 2.60 0.78 0.94 3.22
95% C.I. (-4.29, 0.38) (-0.13, 1.52) (0.33, 2.37) (-2.02, 4.68) (-0.51, 1.45) (0.57, 2.35)
KRS t -1.33 1.65 2.52 0.63 0.96 3.26
95% C.I. (-4.83, 0.92) (-0.13, 1.53) (0.30, 2.40) (-2.78, 5.44) (-0.49, 1.43) (0.58, 2.34)

R2 0.73 0.80
J-statistic 59.34 45.38
IS-statistic 106.81 47.01

C: Lettau and Ludvigson (2001) D: Monthly data from July 1963 - June 2021
4c cay 4c× cay Rm SMB HML

λF,FM 0.02 -0.13 0.06 -0.53 0.13 0.34
λF,CUE -1.45 -3.80 0.01 -0.52 0.19 0.32

FM t 0.20 -0.43 3.12 -1.75 1.09 2.93
95% C.I. (-0.20, 0.25) (-0.70, 0.45) (0.02, 0.09) (-1.11, 0.06) (-0.11, 0.37) (0.11, 0.57)
Shanken t 0.15 -0.31 2.25 -1.74 1.09 2.92
95% C.I. (-0.29, 0.34) (-0.93, 0.68) (0.01, 0.11) (-1.12, 0.07) (-0.11, 0.38) (0.11, 0.57)
KRS t 0.08 -0.27 1.95 -1.67 1.09 2.94
95% C.I. (-0.53, 0.58) (-1.03, 0.78) (-0.00, 0.11) (-1.14, 0.09) (-0.11, 0.37) (0.11, 0.57)

R2 0.70 0.75
J-statistic 31.11 52.25
IS-statistic 31.75 425.55
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Figure 8: Joint 95% confidence sets of risk premia from the DRLM test.

(a) Data: Lettau, Ludvigson, and Ma (2019) (b) Data: Lettau and Ludvigson (2001)

(c) Data: Lettau and Ludvigson (2001) (d) Data: Monthly data, July 1963 - June 2021

Notes: The red region consists of risk premia values that are not rejected by the DRLM test at
the 5% significance level. The test assets are the twenty-five Fama-French portfolios taken from
Lettau, Ludvigson, and Ma (2019) over 1963Q3 - 2013Q4 for (a), Lettau and Ludvigson (2001)
over 1963Q3 - 1998Q3 for (b) and (c), and monthly data from July 1963 - June 2021 downloaded
from French’s website for (d), respectively. (a)(b)(c)(d) correspond to Panels A, B, C, D of Table
3. The zero-β return is incorporated.
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To help answer this question, we employ the DRLM test, since this test is robust to

misspecification as well as the strength of identification. Specifically, we test every risk

premium value between -5 and 5, since Table 3 Panel A and Panel B indicate that risk

premia on all three factors likely lie within this range. The resulting joint confidence sets at

the 5% level are presented in Figure 8a-b, using the data from Lettau, Ludvigson, and Ma

(2019) and Lettau and Ludvigson (2001), respectively.

Interestingly, Figure 8a-b show that the risk premia on SMB and HML are strongly

identified, while the risk premium on Rm is not. These findings remain similar no matter

whether we adopt the data from Lettau, Ludvigson, and Ma (2019) or Lettau and Ludvigson

(2001). In both Figure 8a-b, we can not reject any risk premium value on Rm between -5 and

5, which thus helps reconcile the difference in the confidence intervals for the risk premium

on Rm reported in Table 3 Panel A and Panel B.

For SMB and HML, however, the DRLM test yields tight 95% confidence sets for their

risk premia in Figure 8. For example, Figure 8a implies that the range of the risk premium

on SMB is (0.59, 1.06), while the range of the risk premium on HML is (0.04, 2.00). Similar

ranges can be derived from Figure 8b. All these sets thus largely overlap with those resulting

from the FM t-test as reported in Table 3 Panel A and Panel B.

One might wonder what causes the large difference in the risk premia between Rm and

SMB, HML. To illustrate, we present their β estimates and associated t-statistics in Table

4. It is clear in Table 4 that the three Fama and French (1993) factors are all closely related

to the test asset returns as reflected by the significant t-statistics. There is, however, little

cross-sectional variation in the estimated betas of Rm, i.e. the β estimates on Rm are all close

to 1. Thus, if the zero-β return is incorporated, we have near-multicollinearity in the (ιN
...

β) matrix for the cross-sectional regression, causing the market risk premium to be weakly

identified. Consequently, we observe in Table 3 Panels A and B the seemingly conflicting

risk premium values on Rm, but not for SMB and HML. For the same reason, we observe in

Figure 8a-b the wide range for the risk premium on Rm, but narrower ones for SMB, HML.
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Table 4: β with 25 portfolio returns

The test assets are the 25 Fama-French portfolios. For Rm, SMB, and HML, we use the data
from 1963Q3 - 2013Q4 used by Lettau, Ludvigson, and Ma (2019). For 4c, cay, 4c× cay,
we use the data from 1963Q3 - 1998Q3 used by Lettau and Ludvigson (2001). The reported
beta estimates and their associated t-statistics result from the first pass time-series regression
of the Fama and MacBeth (1973) methodology, see also Kleibergen, Kong, and Zhan (2020)
for the same results reported for Lettau and Ludvigson (2001).

Rm SMB HML 4c cay 4c× cay
β̂ t-stat β̂ t-stat β̂ t-stat β̂ t-stat β̂ t-stat β̂ t-stat

(1) 1.08 26.50 1.50 25.11 -0.31 -6.36 6.35 2.32 4.25 2.96 -4.56 -0.22
(2) 0.94 32.73 1.33 31.52 0.02 0.69 6.30 2.61 3.66 2.90 2.25 0.12
(3) 0.86 29.98 1.14 27.08 0.19 5.56 5.11 2.28 3.22 2.75 3.22 0.19
(4) 0.81 26.16 1.10 24.32 0.29 8.02 5.50 2.58 2.96 2.65 5.12 0.32
(5) 0.94 28.29 1.17 24.04 0.57 14.37 5.79 2.53 2.65 2.21 11.36 0.65
(6) 1.11 36.22 1.05 23.49 -0.33 -8.97 4.38 1.76 4.55 3.49 -15.82 -0.84
(7) 0.94 36.04 0.97 25.32 0.05 1.48 3.63 1.65 3.25 2.83 0.02 0.00
(8) 0.92 33.18 0.76 18.80 0.22 6.81 3.92 1.97 3.07 2.95 -1.08 -0.07
(9) 0.91 29.94 0.68 15.32 0.42 11.67 3.52 1.91 2.66 2.76 6.93 0.50
(10) 0.98 30.95 0.81 17.55 0.66 17.47 4.83 2.41 2.16 2.06 8.48 0.56
(11) 1.08 39.19 0.76 18.65 -0.39 -11.96 2.70 1.21 4.53 3.88 -22.20 -1.31
(12) 0.99 35.98 0.60 14.70 0.07 2.16 2.76 1.47 3.64 3.69 -3.35 -0.23
(13) 0.91 29.02 0.49 10.71 0.28 7.51 2.92 1.69 2.63 2.91 4.40 0.34
(14) 0.95 28.29 0.40 8.19 0.47 11.66 2.58 1.57 2.73 3.18 0.02 0.00
(15) 0.91 23.16 0.62 10.77 0.57 12.20 3.71 1.98 2.15 2.19 4.78 0.34
(16) 1.07 38.14 0.43 10.37 -0.42 -12.67 1.97 1.02 4.22 4.20 -20.28 -1.39
(17) 1.01 31.06 0.32 6.63 0.13 3.31 2.62 1.49 3.28 3.58 -10.24 -0.77
(18) 1.00 32.59 0.22 4.94 0.32 8.74 1.94 1.21 2.57 3.06 -4.98 -0.41
(19) 0.98 30.21 0.22 4.56 0.40 10.44 2.50 1.56 2.32 2.76 0.60 0.05
(20) 1.05 27.69 0.36 6.41 0.61 13.46 3.78 2.05 2.26 2.34 3.28 0.23
(21) 1.02 46.70 -0.20 -6.30 -0.27 -10.39 1.61 1.01 2.77 3.33 -21.22 -1.76
(22) 0.99 39.05 -0.19 -5.16 0.07 2.25 1.16 0.80 2.53 3.33 -4.20 -0.38
(23) 0.93 32.10 -0.23 -5.34 0.27 7.93 2.32 1.88 2.46 3.80 -8.27 -0.88
(24) 0.94 36.21 -0.16 -4.29 0.45 14.52 1.24 0.94 2.24 3.25 -10.49 -1.05
(25) 0.99 26.11 -0.13 -2.40 0.56 12.31 3.07 2.13 1.59 2.11 -1.25 -0.11
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4.2 Lettau and Ludvigson (2001)

To compare with Fama and French (1993), we consider the conditional consumption capital

asset pricing model from Lettau and Ludvigson (2001) where the three factors are con-

sumption growth, 4c, consumption-wealth ratio, cay, and their interaction, 4c× cay. The

significant FM t and Shanken t-statistics on the interaction 4c × cay, the relatively small,

insignificant (at the 5% level) J-statistic, together with the large cross-sectional R2 reported

in Panel C of Table 3 provide considerable motivation for this model for asset pricing.

The small IS-statistic in Panel C of Table 3, however, shows that the three-factor model

of Lettau and Ludvigson (2001) is just weakly identified. Furthermore, given its proximity to

the J-statistic, the small value of the J-statistic also results from it, since the J-statistic is at

most equal to the IS-statistic. The risk premia can therefore not be identified. Consequently,

the significant FM t-statistic on 4c× cay should be interpreted with caution, since the FM

t-test is now unreliable and this reasoning similarly applies to the KRS t-test. Also, as

warned by Kleibergen and Zhan (2015), weakly identified models can yield spuriously large

cross-sectional R2’s, which should then not be taken as the evidence in support of asset

pricing.

Next, we apply the DRLM test to the three-factor model of Lettau and Ludvigson (2001).

As shown by Figure 8c, we can not reject any hypothesized value for risk premia in the

range of [-5, 5], reflecting that the risk premia can not be identified for the conditional

consumption capital asset pricing model in Lettau and Ludvigson (2001), which is in line

with the proximity of the J and IS statistics.

The challenge to identify the risk premia in Lettau and Ludvigson (2001) is further

explained by Table 4, which contains the β estimates and their associated t-statistics. Table

4 shows that 4c × cay is poorly correlated with asset returns, which makes a column of

β statistically close to zero (i.e. tiny t-statistics in the last column). Thus, the full rank

condition of β is problematic, which leads to the weak identification problem in Lettau and

Ludvigson (2001). Consequently, we observe a small IS-statistic, which tests for a full rank
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value of β, in Panel C of Table 3, and uninformative confidence sets in Figure 8c.

In light of the findings in Figure 8a-c, one might wonder when the DRLM test could yield

an informative confidence set for the risk premia. We show that a bounded confidence set

of the risk premia is feasible if we just have more time series observations, or if we remove

the zero-β return, so λ0 = 0, as presented in the next two subsections, respectively.

Table 5: β with 25 portfolio returns using alternative data for Fama and French
(1993)

The test assets are the 25 Fama-French portfolios. For Rm, SMB, and HML in the left panel,
we use the data from 1963Q3 - 1998Q3 as in Lettau and Ludvigson (2001); and from July
1963 - June 2021, downloaded from French’s website, for the right panel, respectively. The
reported beta estimates and their associated t-statistics result from the first pass time-series
regression of the Fama and MacBeth (1973) methodology.

Rm SMB HML Rm SMB HML
β̂ t-stat β̂ t-stat β̂ t-stat β̂ t-stat β̂ t-stat β̂ t-stat

(1) 1.00 21.40 1.53 25.43 -0.29 -4.44 1.09 49.32 1.38 43.79 -0.48 -14.87
(2) 0.98 30.05 1.37 32.47 0.11 2.49 0.95 53.68 1.31 51.69 -0.17 -6.58
(3) 0.97 30.66 1.21 29.54 0.28 6.39 0.92 75.00 1.09 61.84 0.15 8.16
(4) 0.96 34.84 1.15 32.46 0.43 11.38 0.87 72.34 1.07 61.78 0.32 17.81
(5) 1.03 32.38 1.24 30.15 0.76 17.24 0.93 52.58 1.08 42.39 0.53 20.15
(6) 1.04 27.17 1.08 21.77 -0.49 -9.31 1.12 76.44 1.03 48.82 -0.51 -23.70
(7) 1.01 31.82 1.00 24.45 0.00 0.10 1.00 82.03 0.92 52.68 -0.01 -0.73
(8) 1.02 35.96 0.83 22.65 0.23 5.96 0.96 75.66 0.76 41.93 0.28 14.97
(9) 1.02 36.41 0.69 19.10 0.47 12.23 0.94 80.20 0.72 42.72 0.47 27.34
(10) 1.07 36.32 0.83 21.88 0.76 18.66 1.07 84.69 0.88 48.20 0.65 35.21
(11) 1.06 31.54 0.75 17.17 -0.46 -10.02 1.10 78.20 0.74 36.81 -0.51 -24.97
(12) 1.01 31.29 0.65 15.68 0.00 0.05 1.01 73.17 0.60 26.93 0.06 2.91
(13) 1.00 34.68 0.54 14.47 0.31 7.83 0.97 68.10 0.44 21.75 0.35 16.85
(14) 1.02 35.48 0.43 11.56 0.50 12.58 0.98 72.25 0.44 22.51 0.55 27.59
(15) 1.07 30.24 0.61 13.28 0.78 15.87 1.07 63.75 0.57 23.75 0.74 29.92
(16) 1.02 30.70 0.39 9.04 -0.48 -10.42 1.07 74.82 0.39 19.12 -0.45 -21.72
(17) 1.06 31.66 0.32 7.48 0.02 0.49 1.06 69.04 0.23 10.45 0.17 7.52
(18) 1.05 34.63 0.22 5.50 0.32 7.54 1.03 65.57 0.18 8.07 0.40 17.55
(19) 1.07 31.94 0.22 5.03 0.50 10.92 1.02 66.30 0.23 10.28 0.56 24.57
(20) 1.12 25.63 0.44 7.86 0.70 11.67 1.15 61.12 0.30 11.00 0.78 28.16
(21) 1.00 34.39 -0.23 -6.20 -0.39 -9.61 0.98 95.17 -0.23 -15.89 -0.31 -20.80
(22) 1.02 33.17 -0.21 -5.19 -0.05 1.16 0.97 75.34 -0.18 -9.65 0.11 5.68
(23) 0.91 24.75 -0.23 -4.87 0.16 3.09 1.05 87.14 -0.13 -7.54 0.35 20.06
(24) 1.00 35.20 -0.16 -4.28 0.44 11.26 1.05 82.15 -0.20 -10.70 0.37 19.72
(25) 0.99 20.47 -0.09 -1.39 0.69 10.30 1.06 77.70 -0.26 -13.49 0.39 19.42
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4.3 More time series observations

With more time series observations, we expect more information in the data and conse-

quently, stronger identification of the risk premia. Figure 8d therefore uses monthly data

from July 1963 to June 2021, so T = 696, for the Fama and French (1993) three factors

and the twenty-five size and book-to-market sorted portfolios, which are downloaded from

French’s online data library. Table 5 (right panel) shows the resulting β estimates from which

it is clear that the standard errors of the estimates have almost halved, which doubles the

t-statistics testing their significance, while there is also more variation in the β estimates for

Rm when compared to the left panel of Table 5 with fewer observations. The estimate of β

is consequently distant from a reduced rank value as shown by the large IS-statistic, 425.55,

in Panel D of Table 3. It considerably exceeds the resulting J-statistic, 52.25, indicating

strong identification of the risk premia.

In line with such strong identification, Figure 4d shows that the joint 95% confidence set

of the risk premia on the Fama and French (1993) factors resulting from the DRLM test lies in

a tight region of the 3-dimensional space. Specifically, this confidence set contains all values

of the risk premia that are not rejected by the DRLM test at the 5% level. Combining all

these values results in the red joint confidence set plotted in Figure 4d. Moreover, projecting

the joint confidence set to each axis yields the 95% confidence intervals for each risk premium:

(-1.22, 0.18) for Rm, (0.12, 0.26) for SMB, and (0.24, 0.41) for HML, respectively. These

95% confidence intervals are also comparable to, but often smaller than those reported in

Panel D of Table 3 by inverting the FM t, Shanken t and KRS t tests.

4.4 Remove the zero-β return, impose λ0 = 0

Instead of using richer data, we can also remove the zero-β return, so impose λ0 = 0, to

improve the identification of the risk premia. When we do so by using the data from Lettau,

Ludvigson, and Ma (2019), the J-statistic equals 87.47 and the IS-statistic becomes 974.39.

Hence, the IS-statistic has increased ninefold while the J-statistic remains almost the same
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compared with the specification including the zero-β return in Panel A of Table 3. It indicates

that the risk premia are now well identified.

To illustrate further, we use DRLM to construct the joint 95% confidence set in Figure

9, where λ0 = 0 is imposed for the Fama and French (1993) model. Figure 9 is to be

compared with Figure 8a. They use the same data, but λ0 = 0 is imposed for Figure 9 but

not for Figure 8a. Clearly, the λ0 = 0 restriction strongly improves the identification of the

risk premia, so we observe a bounded 95% confidence set in Figure 9. Projecting the joint

confidence set to each axis leads to 95% confidence intervals for the risk premia on Rm, SMB,

and HML, respectively: (1.52, 1.84) for Rm, (0.66, 1.06) for SMB, and (0.59, 1.93) for HML.

Since the three factors are traded, we can also infer the 95% confidence sets on their

risk premia by using the average value of the respective factor ± 1.96 × standard deviation,

which leads to (0.41, 2.80) for Rm, (0.18, 1.78) for SMB and (0.05, 1.81) for HML. These

confidence intervals are comparable to those derived above by the projection method, but

are considerably wider. All these empirical findings therefore lend credibility to the proposed

DRLM test.

Figure 9: Joint 95% confidence set of risk premia by the DRLM test for the
Fama and French (1993) model with the λ0 = 0 restriction.

Notes: The red region consists of risk premia values that are not rejected by the DRLM test at
the 5% significance level. The test assets are the twenty-five Fama-French portfolios taken from
Lettau, Ludvigson, and Ma (2019) over 1963Q3 - 2013Q4.
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4.5 Further discussion

Though misspecified, the Fama and French (1993) three-factor model has been well docu-

mented to exhibit relatively strong correlations with asset returns. Indeed, the model leads

to large IS-statistics as we report in Table 3. Astonishingly, even when the IS-statistic is

significant and exceeds 100 (see Panel A of Table 3), we still find that the risk premium

on Rm is only weakly identified in the beta representation. Given that a large number of

empirical studies, as indicated by Table 1, have weaker strength of identification than Fama

and French (1993), it is therefore unlikely that their risk premia could be precisely identified.

To achieve stronger identification, we therefore need to adopt richer data or impose extra

restrictions, as indicated by Figure 8d and Figure 9, respectively.

The conditional consumption capital asset pricing model in Lettau and Ludvigson (2001)

serves as an example where the FM t-statistic, the misspecification J-statistic, and the cross-

sectional R2 line up nicely to show support for the model. Yet the model appears to lack

identification, as reflected by the tiny difference between the J and IS statistics, and the

wide confidence set resulting from the DRLM test, since the rank condition of β is likely

violated. These empirical findings thus clearly show the importance of adopting the J, IS

statistics and the DRLM test for assessing asset pricing models.

In the Appendix, we further extend our empirical analysis to the five-factor model of

Fama and French (2015). Similar to Figure 9, we find that the DRLM test can lead to

tight 95% confidence sets for the risk premia on Rm, SMB, HML. For the other two factors

(profitability, RMW; investment, CMA), we find that the 95% confidence sets resulting

from DRLM appear relatively wide, especially for the investment factor. These findings are

consistent with those in Kleibergen and Zhan (2015), who show that the commonly used

25 Fama-French portfolios have a strong factor structure, i.e., the majority of variations in

these portfolios are likely captured by three factors, so it is hard to precisely identify risk

premia on all five factors by using such test assets.
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5 Conclusion

An alarmingly large number of factors in the asset pricing literature are able to yield sig-

nificant t-statistics on their risk premia, together with seemingly promising misspecification

J-statistics and cross-sectional R2’s. The credibility of these conventional statistics, however,

is threatened by misspecification and weak identification, both of which are prevalent as we

document in this paper. We show that failure to account for both misspecification and weak

identification could easily lead to erroneous conclusions. To remedy these problems, we sug-

gest that the J-statistic for misspecification, the IS-statistic for identification strength, and

the DRLM test for risk premia become part of a toolkit that helps to provide trustworthy

diagnosis and inference in future studies.
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Appendix

Proof of Theorem 1: Consider repackaging the assets to a new set of N∗ assets by an

invertible N ×N weight matrix A :

R∗t = ARt.

The pseudo-true value resulting from the FM two-pass population objective function is:

λ∗F,FM = (β∗′β∗)
−1
β∗′µR∗ = (β′A′Aβ)

−1
β′A′AµR,

with β∗ = Aβ, µR∗ = AµR, which is not equal to the pseudo-true value resulting from the

orginal set of assets unless A is orthogonal. Since an orthogonal matrix A does not lead

to a set of portfolios, the FM pseudo-true value is not invariant under repackaging. Under

correct specification, µR = βλF , so the risk premium is invariant to repackaging.

The pseudo-true value resulting from the CUE objective function:

λ∗F,CUE = arg minλF (µR − βλF )′
[
var(µ̂R − β̂λF )

]−1

(µR − βλF )

= arg minλF (AµR − AβλF )′
[
var(Aµ̂R − Aβ̂λF )

]−1

(AµR − AβλF )

= arg minλF (µR∗ − β∗λF )′
[
var(µ̂R∗ − β̂

∗
λF )
]−1

(µR∗ − β∗λF ),

is clearly invariant to repackaging by an invertible matrix A, but not to repackaging by an

N∗ ×N matrix with N∗ smaller than N.

Proof of Theorem 2: The FM two-pass estimator is given by:

λ̂F = (β̂
′
β̂)−1β̂

′
µ̂R.

We characterize the limit behavior of the FM two-pass estimator for the one factor setting,

so λ̂F = β̂
′
µ̂R
β̂
′
β̂
. It results from the joint limit behavior of its two different elements:

√
T

 µ̂R − µR
β̂ − β

→
d

 ψµ

ψβ

 ,
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with ψµ ∼ N(0,Ω + βQβ′) and ψβ ∼ N(0,ΩQ−1) independently distributed which corre-

sponds with Shanken (1992, Lemma 1). To focus on a setting where both the misspecification

and betas are small and perhaps just borderline significant, we use the weak factor/small β

and misspecification assumption (16):

β = βT = b√
T
, µR − βλF = a√

T
, λ∗F = λF + (b′b)−1b′a,

with b and a N -dimensional vectors of constants. Under the small misspecification and β

assumption, the limit behavior of the least squares estimator β̂ and µ̂R are characterized by:

√
T β̂ →

d
b+ ψβ,

√
T µ̂R →

d
bλF + a+ ψµ,

which we use to characterize the behavior of the FM risk premia estimator

λ̂F =
µ̂′Rβ̂

β̂
′
β̂

=
(µ̂R−β̂λ∗F+β̂λ∗F )′β̂

β̂
′
β̂

= λ∗F +
(µ̂R−β̂λ∗F )′β̂

β̂
′
β̂

= λ∗F +
[µ̂R−µR+(µR−βλ∗F )−(β̂−β)λ∗F ]′β̂

β̂
′
β̂

with λ∗F = β′µR
β′β = λF + (b′b)−1b′a, the pseudo-true value, so for small values of the betas and

misspecification:

λ̂F = λ∗F +
[
√
T (µ̂−µR)+

√
T (µR−βλ∗F )−

√
T (β̂−β)λ∗F )]

′
(
√
T β̂)

(
√
T β̂)′(

√
T β̂)

→
d

λ∗F +
[ψµ+bλF+a−b(λF+(b′b)−1b′a)−ψβλ∗F ]′(b+ψβ)

(b+ψβ)′(b+ψβ)

= λ∗F +
(ψµ+e−ψβλ∗F )′(b+ψβ)

(b+ψβ)′(b+ψβ)

= λ∗F

(
1− ψ′β(b+ψβ)

(b+ψβ)′(b+ψβ)

)
+

ψ′µ(b+ψβ)

(b+ψβ)′(b+ψβ)
+

e′(b+ψβ)

(b+ψβ)′(b+ψβ)
,

with e = a− b(b′b)−1b′a, which shows that the limit behavior of the FM two-pass estimator

consists of four components.

The DRLM test: Kleibergen and Zhan (2021) propose the double robust Lagrange mul-

tiplier (DRLM) statistic for testing hypotheses on the pseudo-true value of the CUE. They

show that under the hypothesis of interest, H0 : λ∗F,CUE = λ∗F,CUE,0, the limiting distribution

of the DRLM statistic is bounded by a χ2
K distribution for general values of the identifica-
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tion and misspecification strengths under weak conditions. The DRLM statistic involves a

recentered estimator of the β’s that depends on the hypothesized value of the pseudo-true

value, which we indicate by the K-dimensional vector l :

D̂(l) = −β̂ −
[
V̂β1(µR−βl)(l)V̂(µR−βl)(l)

−1(µ̂R − β̂l) . . .

V̂βK(µR−βl)(l)V̂(µR−βl)(l)
−1(µ̂R − β̂l)

]
= −β̂ − (R̄− β̂l)(1 + l′Q̂−1

F̄ F̄
l)−1l′Q̂−1

F̄ F̄

= − 1
T

∑T
t=1Rt(F̄t + l)′

[
1
T

∑T
t=1(F̄t + l)(F̄t + l)′

]−1

,

where V̂βi(µR−βl) is the estimator of the covariance between β̂i and µ̂R− β̂l, for i = 1, . . . , K,

β̂ = (β̂1 . . . β̂K) and V̂(µR−βλf )(l) is the covariance matrix estimator of the sample pricing error

µ̂R − β̂l. The identical expressions on the last two lines are for a setting of i.i.d. errors with

Q̂F̄ F̄ the estimator of the covariance matrix of the factors, Q̂F̄ F̄ = 1
T

∑T
t=1 F̄tF̄

′
t , F̄t = Ft− F̄ ,

F̄ = 1
T

∑T
t=1 Ft. The DRLM statistic for testing H0 : λ∗F,CUE = l then reads:

DRLM(l) = T × (µ̂R − β̂l)′V̂(µR−βl)(l)
−1D̂(l)

[
D̂(l)′V̂(µR−βl)(l)

−1D̂(l)+(
IN ⊗ V̂(µR−βl)(l)

−1(µ̂R − β̂l)
)′
V̂D̂(l)(l)

(
IN ⊗ V̂(µR−βl)(l)

−1(µ̂R − β̂l)
)]−1

D̂(l)′V̂(µR−βl)(l)
−1(µ̂R − β̂l),

where V̂D̂(l) is the estimator of the covariance matrix of vec(D̂(l)). For the i.i.d. setting, it

simplifies to:

DRLM(l) = µ̂(l)∗′D̂(l)∗
[
µ̂(l)∗′µ̂(l)∗IN + D̂(l)∗′D̂(l)∗

]−1

D̂(l)∗′µ̂(l)∗,

with µ̂(l)∗ =
√
T Ω̂−

1
2 (R̄− β̂l)(1 + l′Q̂−1

F̄ F̄
l)−

1
2 , and D̂(l)∗ =

√
T Ω̂−

1
2 D̂(l)(Q̂F̄ F̄ + ll′)

1
2 .

The 100×(1−α)% confidence set for λ∗F,CUE (denoted by CSλ∗F,CUE(α) below) that results

from the DRLM test consists of all values of l for which the DRLM test does not reject using

the 100× (1− α)% critical value that results from the χ2
K-distribution:

CSλ∗F,CUE(α) = {l : DRLM(l) ≤ χ2
K(α)} ,
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where χ2
K(α) is the upper α-th quantile of the χ2

K distribution. DRLM(l) is not a quadratic

function of l, so it cannot directly be inverted to obtain the confidence set. The confidence

set does therefore not have the usual expression of an estimator plus or minus a multiple

of the standard error. Instead, we have to specify a K-dimensional grid of values for l, and

compute the DRLM statistic for each value of l on the K-dimensional grid to determine if

it does not exceed the appropriate critical value so l is part of the confidence set.

The DRLM statistic is a quadratic form of the derivative of the sample CUE objective

function with respect to l. It is therefore equal to zero at all stationary points of the sample

CUE objective function. Since the DRLM statistic is not a quadratic function of l, there can

be multiple stationary points where it equals zero. This affects the discriminatory power of

the DRLM test. Kleibergen and Zhan (2021) therefore propose a power improvement rule

which rejects values of l at the α% significance level, alongside values of l where the DRLM

statistic is significant at the α% level also, when there are significant values of the DRLM

statistic on every line going from the hypothesized value to the CUE. Kleibergen and Zhan

(2021) show that the power improvement rule does not affect the size of the DRLM test and

improves power considerably.

Since the DRLM test is size correct, the coverage of a 100× (1−α)% confidence set is at

least 100× (1−α)%. By projecting these confidence sets on the K different axes, we obtain

100 × (1 − α)% univariate confidence sets for the individual risk premium whose coverage

is also at least 100 × (1 − α)%. When we plug in estimators for some of the risk premia,

the coverage of the resulting confidence sets is not guaranteed nor is the size of the resulting

subset DRLM test.

When using the power improvement rule, the confidence sets resulting from the DRLM

test can have two distinct shapes.

1. Bounded and convex: there is a closed compact set of values of l for which the DRLM

statistic does not exceed the critical value.

2. Unbounded: this occurs either when there are no values of l for which the DRLM

statistic exceeds the critical value (unbounded and convex), or when there is a bounded

set of values of l for which the DRLM statistic exceeds the critical value (unbounded
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and disjoint).

Bounded and convex confidence sets occur when the risk premia are well identified.

Unbounded confidence sets are indicative of identification failure. Dufour (1997, Theorems

3.3 and 3.6) formally proves that a size correct test on a parameter which is potentially not

identified must have a positive probability of producing an unbounded 95% confidence set.

Conversely, any test procedure, such as the FM t-test, that cannot generate an unbounded

95% confidence set, cannot be a size correct test procedure when the tested parameter can

be non-identified.

J and IS statistics:

1. If λ0 = 0 is not imposed: considerRt = (R1,t . . .RN+1,t)
′: (N+1)×1 vector of returns;

Ft: K×1 vector of risk factors, t = 1, ..., T . By subtracting the (N+1)-th asset return,

we obtain the N × 1 column vector Rt:

Rt = (R1,t . . .RN,t)
′ − ιNRN+1,t.

2. If λ0 = 0 is imposed: consider Rt as the observed N × 1 vector of returns, and Ft as

the K × 1 vector of risk factors.

Estimation of the auxiliary linear factor model Rt = α + βFt + ut yields

β̂ =
T∑
t=1

R̄tF̄
′
t

(
T∑
t=1

F̄tF̄
′
t

)−1

, Ω̂ =
1

T

T∑
t=1

ûtû
′
t, and Q̂FF =

1

T

T∑
t=1

F̄tF̄
′
t ,

where F̄t = Ft−F̄ , F̄ = 1
T

∑T
t=1 Ft, R̄t = Rt−R̄, R̄ = 1

T

∑T
t=1 Rt, and ût = (Rt−R̄)−β̂(Ft−F̄ )

is the residual at time t.

Let rk be the smallest root of

∣∣∣µQ̂−1
FF − β̂

′
Ω̂−1β̂

∣∣∣ = 0,

which is identical to the smallest eigenvalue of the matrix Q̂FF β̂
′
Ω̂−1β̂. The IS-statistic for
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H0 : rank(β) = K − 1, reads:

IS = T × rk � χ2
N−K+1.

Let “Eigenmin" be the smallest root of∣∣∣∣∣∣µ
 1 0

0 Q̂−1
FF

− ( R̄ β̂
)′

Ω̂−1
(
R̄ β̂

)∣∣∣∣∣∣ = 0,

which is equal to the smallest eigenvalue of

 1 0

0 Q̂FF

( R̄ β̂
)′

Ω̂−1
(
R̄ β̂

)
. The

misspecification J-statistic for testing H0 : E(Rt) = βλF reads:

J = T × Eigenmin
d→ χ2

N−K .

DRLM for the Fama and French (2015) five-factor model: See Table 6.

Table 6: Application to the Fama and French (2015) five-factor model

The five factors (Rm, SMB, HML, RMW, CMA) of Fama and French (2015) are downloaded
from French’s website, together with the 25 Fama-French portfolios from July 1963 - Nov
2021 as the test assets. The zero-β return, λ0 = 0 restriction is imposed for the DRLM test.
The resulting J-statistic is 68.16, and IS-statistic is 113.05.

Rm SMB HML RMW CMA
mean 0.59 0.23 0.27 0.27 0.26
s.e. 0.17 0.11 0.11 0.08 0.07

Comparison of 95% C.I. of λF
(I) C.I. by mean ± 1.96 s.e. (0.26, 0.92) (0.00, 0.45) (0.05, 0.48) (0.11, 0.43) (0.12, 0.41)
(II) C.I. by DRLM (0.55, 0.69) (0.15, 0.31) (0.15, 0.32) (0.01, 0.31) (0.15, 1.29)

Ratio of the C.I. widths, (II)
(I) 21% 36% 40% 94% 393%
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