StateUNIVERSITY
THE 2011-2012 KENNESAW STATE UNIVERSITY HIGH SCHOOL MATHEMATICS COMPETITION PART II

Calculators are NOT permitted

1. Find, with proof, all integers n such that $2^{6}+2^{9}+2^{n}$ is the square of an integer.
2. Find, with proof, all real numbers a such that $|x-1|-|x-2|+|x-4|=a$ has exactly 3 solutions.
3. As Lisa hurried to copy down the last problem of her math homework assignment at the end of class, she got as far as

$$
0=9 x^{8}-28 x^{6}-
$$

when her teacher abruptly erased the board and ended class. Looking at her notes later that evening, Lisa could recall only that the polynomial in the equation had rational coefficients, and was written with decreasing exponents, all of which were non-negative integers. She remembered that the teacher told the class to compute the one root of this equation that was unequal to the other seven identical roots. Help Lisa by finding this one root and include for her a proof.
4. A pair-square set of size n is a set of n distinct positive integers such that each pair of integers in the set has a sum which is the square of an integer. For example, the set $\{15,34,66\}$ is a pair-square set of size 3 because $15+34=7^{2}$, $34+66=10^{2}$, and $15+66=9^{2}$.
a. Find a pair-square set of size 3 containing the number 2012.
b. Prove that any pair-square set of size 3 contains at most one odd number.
5. The length of the shorter side of a parallelogram is 2012. The bisectors of the two acute interior angles are 20 units apart. The bisectors of the two obtuse interior angles are 21 units apart. Compute, with proof, the length of the longer side of the parallelogram.

SOLUTIONS

1. If $\mathrm{m}^{2}=2^{6}+2^{9}+2^{n}=576+2^{n}=24^{2}+2^{n}$, then $2^{n}=m^{2}-24^{2}=(m-24)(m+24)$. Therefore, $m+24$ and $m-24$ must each be powers of 2 . Let $\mathrm{m}+24=2^{\mathrm{k}}$ and $\mathrm{m}-24=2^{\mathrm{p}}$ where, $\mathrm{p}<\mathrm{k}$ and $\mathrm{p}+\mathrm{k}=\mathrm{n}$. Then
$2^{k}-2^{p}=48$ which implies 2^{p} divides 48 , so that $p \leq 4$. Trying $p=0,1,2,3,4$ gives $p=4, k=6$ and $n=10$ as the only possible value for n.
2. We begin by graphing the function $y=f(x)=|x-1|-|x-2|+|x-4|$. If $x \leq 1$, then $x-1 \leq 0, x-2 \leq 0$ and $x-4 \leq 0$, so we have

$$
y=-(x-1)+(x-2)-(x-4)=-x+3
$$

If $1 \leq x \leq 2$, then then $x-1 \geq 0, x-2 \leq 0$ and $x-4 \leq 0$, so

$$
y=(x-1)+(x-2)-(x-4)=x+1 .
$$

In the interval $2 \leq x \leq 4$ we have $x-1 \geq 0, x-2 \geq 0$ but $x-4 \leq 0$, so

$$
y=(x-1)-(x-2)-(x-4)=-x+5
$$

Finally, for $x \geq 4$ we have

$$
y=(x-1)-(x-2)+(x-4)=x-3 .
$$

By piecing together the relevant parts of these four linear functions, we get the graph of the function $f(x)$ shown at the right.

Thus, for the original equation to have exactly three solutions, we have to choose a so that the horizontal line $y=a$ touches the graph of $f(x)$ at exactly three points. From the graph, this happens only for $a=2$ and $a=3$.
3. $P(x)=9 x^{8}-28 x^{6}-\ldots$ Since the coefficient of x^{7} is zero, the sum of the roots of $\mathrm{P}(\mathrm{x})=0$ is zero. Let the seven identical roots be a and the desired eighth root be b. Then $7 a+b=0$ or $b=-7 a$. Standardizing $\mathrm{P}(\mathrm{x})$, the sum of the products of the roots taken two at a time is $-\frac{28}{9}$. Therefore, ${ }_{7} \mathrm{C}_{2} a^{2}+7 a b=-\frac{28}{9}$ or $21 a^{2}+7 a b=-\frac{28}{9}$. Substituting $-7 a$ for b we obtain $a= \pm \frac{1}{3}$. Hence there are two possible pairs of values for a and b : $a=\frac{1}{3}, b=-\frac{7}{3}$ or $a=-\frac{1}{3}, b=\frac{7}{3}$. However, by Descartes' rule of signs, there are at most six positive roots of $\mathrm{P}(\mathrm{x})$, so the value of a cannot be $\frac{1}{3}$. Therefore, the value of b is $\frac{7}{3}$
4. a. Let the desired pair-square set be $\{2012, a, b\}$. Since $2012+13=2025=45^{2}$, try $a=13$ as a second member of the set. Then

$$
2012+b=x^{2} \quad \text { and } 13+b=y^{2} \text { for some integers } \mathrm{x} \text { and } \mathrm{y} .
$$

Subtracting these two equations gives $1999=x^{2}-y^{2}=(x+y)(x-y)$.
Since 1999 is a prime number, $x+y=1999$ and $x-y=1$. From these two equations we obtain $x=1000$. Then $b=1000^{2}-2012=1000000-2012=997988$. Thus, one desired pair-square set of size 3 is $\{13,2012,997988\}$.
(Note: $\{292,2012,45077\}$ and $\{488,2012,143912\}$ also work. There are others.)
b. Every integer has one of the four forms $4 k ; 4 k+1 ; 4 k+2$ and $4 k+3$ for integers k.

First we prove that the square of an integer must have one of the forms $4 n$ or $4 n+1$.
Proof:
(i) $(4 \mathrm{k})^{2}=4\left(4 \mathrm{k}^{2}\right)=4 \mathrm{n}$
(ii) $(4 \mathrm{k}+1)^{2}=16 \mathrm{k}^{2}+8 \mathrm{k}+1=4(4 \mathrm{k}+2 \mathrm{k})+1=4 \mathrm{n}+1$
(iii) $(4 \mathrm{k}+2)^{2}=16 \mathrm{k}^{2}+16 \mathrm{k}+4=4\left(4 \mathrm{k}^{2}+4 \mathrm{k}+1\right)=4 \mathrm{n}$
(iv) $(4 \mathrm{k}+3)^{2}=16 \mathrm{k}^{2}+24 \mathrm{k}+9=4\left(4 \mathrm{k}^{2}+6 \mathrm{k}+2\right)+1=4 \mathrm{n}+1$

Therefore, the square of an integer must have one of the forms $4 n$ or $4 n+1$.
Let S be a pair-square set of size 3 . Suppose that the set S contains the two odd numbers a and b. Since $a+b$ is an even square, it must have form $4 n$, and therefore a and b cannot both have form $4 k+1$, nor can they both have form $4 k+3$. It follows that we can write $a=4 k+1$ and $b=4 k+3$.

We derive a contradiction by showing that there is no possibility for the third member z of S. Indeed, if z has form $4 k$ or $4 k+3$, then $z+b$ is not a square, and if z has form $4 k+1$ or $4 k+2$, then $z+a$ is a non-square. It follows that S can have no more than one odd number.
5. It is easy to show that $\triangle \mathrm{ADP}$ is isosceles (note the marked congruent angles).

Thus DP = 2012 and all we need is the length of PC.
Since $\triangle \mathrm{ADP}$ and $\triangle \mathrm{CBQ}$ are congruent isosceles triangles,
 $\angle \mathrm{PAB} \cong \angle \mathrm{DAP} \cong \angle \mathrm{CQB}$, making $\overline{\mathrm{AP}}$ parallel to $\overline{\mathrm{QC}}$.
Similarly, the other two angle bisectors are parallel, making EFGH a parallelogram.
Since $\angle \mathrm{DAB}$ and $\angle \mathrm{ADC}$ are supplementary, $\mathrm{m} \angle \mathrm{DAB}+\mathrm{m} \angle \mathrm{ADC}=180$.
Since $\mathrm{m} \angle \mathrm{DAE}=\frac{1}{2} \mathrm{~m} \angle \mathrm{DAB}$ and $\mathrm{m} \angle \mathrm{ADE}=\frac{1}{2} \mathrm{~m} \angle \mathrm{ADC}$
we know $\mathrm{m} \angle \mathrm{DAE}+\mathrm{m} \angle \mathrm{ADE}=\frac{1}{2}(\mathrm{~m} \angle \mathrm{DAB}+\mathrm{m} \angle \mathrm{ADC})=90$.
Therefore, $\triangle \mathrm{ADE}$ is a right triangle and $\mathrm{m} \angle \mathrm{DEA}=\mathrm{m} \angle \mathrm{HEF}=90^{\circ}$, making EFGH a rectangle. This means that $\mathrm{EF}=20$ and $\mathrm{FG}=21$. Using the Pythagorean Theorem on triangle EFG, $\mathrm{EG}=29$. Since $\triangle \mathrm{DPE} \cong \triangle \mathrm{BCG}$ (AAS) we know $\overline{\mathrm{PE}} \cong \overline{\mathrm{CG}}$. Since they are also parallel, EGCP is a parallelogram, so that $\mathrm{EG}=\mathrm{PC}=29$. Therefore, the length of the longer side of ABCD is $2012+29=2041$.

