THE 2013-2014 KENNESAW STATE UNIVERSITY HIGH SCHOOL MATHEMATICS COMPETITION
 PART II

In addition to scoring student responses based on whether a solution is correct and complete, consideration will be given to elegance, simplicity, originality, and clarity of presentation.

Calculators are NOT permitted.

1. A and B both represent nonzero digits (not necessarily distinct). If the base ten numeral $\underline{A} \underline{B}$ divides, without remainder, the base ten numeral $\underline{A} \underline{0} \underline{B}$ (whose middle digit is zero), find, with proof, all possible values of $\underline{A} \underline{B}$.
2. A and B are points on the positive x and positive y axes respectively and C is the point with coordinates $(3,4)$. Prove that the perimeter of triangle ABC is greater than 10 .

3. One solution for the equation $a^{2}+b^{2}+c^{2}+2=a b c$ is $a=3, b=3$ and $c=4$.
a. Find a solution (a, b, c) where a, b, and c are integers all larger than 10 .
b. Prove that there are infinitely many solutions (a, b, c) where a, b, and c are positive integers.
4. Consider the equation $\sqrt{x}=\sqrt{a}+\sqrt{b}$, where x is a positive integer.
a. Prove that the equation has a solution (a, b) where a and b are both positive integers, if and only if x has a factor which is a perfect square greater than 1 .
b. If $x \leq 1,000$, compute, with proof, the number of values of x for which the equation has at least one solution (a, b) where a and b are both positive integers.
5. In right triangle $\mathrm{ABC}, \mathrm{AC}=6, \mathrm{BC}=8$ and $\mathrm{AB}=10$. PA and PB bisect angles A and B respectively. Compute, with proof, the ratio $\frac{\mathrm{PA}}{\mathrm{PB}}$.

SOLUTIONS - KSU MATHEMATICS COMPETITION - PART II 2013-14

1. Of course, this problem can be done by trial and error (there are only 81 possibilities), but we present a more elegant solution.

Suppose $\frac{A 0 B}{A B}=k$. Then $100 A+B=10 A k+B k$ or
(i) $100 A-10 A k=B k-B=B(k-1)$

Since the left side of equation (i) is a multiple of 5 , the right side must also be. Since $1<k<10$, the right side is positive and thus so is the left side. Then either 5 divides $k-1$ or 5 divides B.

Suppose 5 divides $k-1$. Then $k=6$, so that (i) becomes $40 A=5 B$, or $B=8 A$. Therefore, $A=1, B=8$, and $\underline{A} \underline{B}=18$.

Now suppose 5 divides B. Then $B=5$, and (i) becomes $10 A(10-k)=5(k-1)$, or $2 A(10-k)=k-1$. From this, $A=\frac{k-1}{2(10-k)}$. Since the denominator is even, $k-1$ must be even and k is odd. Trying $\mathrm{k}=3,5,7$, and 9 , we find only $\underline{A} \underline{B}=15$ and 45 corresponding to $k=7,9$ respectively. Therefore, the only possible values for $\underline{A} \underline{B}$ are 15,18 , and 45 .
2. Consider the reflection images of C over the x and y axes. Call these points C_{x} and C_{y}, respectively, as shown. The coordinates of C_{x} are $(3,-4)$ and of C_{y} are $(-3,4)$. The length of $\overline{\mathrm{CC}_{x}}$ is $2(4)=8$ and the length of $\overline{\mathrm{CC}_{y}}$ is $2(3)=6$.

Since $\triangle \mathrm{ABC}$ is a right triangle, the length of
$\overline{\mathrm{C}_{\mathrm{x}} \mathrm{C}_{\mathrm{y}}}$ is $\sqrt{6^{2}+8^{2}}=10$. Also note that because
C_{y} is a reflection image of $\mathrm{C}, \mathrm{BC}=\mathrm{BC}_{y}$. Similarly, $\mathrm{AC}=\mathrm{AC}_{x}$.
In quadrilateral $\mathrm{ABC}_{y} \mathrm{C}_{x}, \mathrm{C}_{y} \mathrm{~B}+\mathrm{BA}+\mathrm{AC}_{x}>\overline{\mathrm{C}_{\mathrm{x}} \mathrm{C}_{\mathrm{y}}}=10$.
Therefore, by substitution, $\mathrm{BC}+\mathrm{BA}+\mathrm{AC}>10$.

3. Suppose we begin with two positive integers a and b, and we try to find a third integer x such that $a^{2}+b^{2}+x^{2}+2=a b x$. Then the problem can be thought of as finding an integer solution (if one exists) for the quadratic equation $x^{2}-(a b) x+\left(a^{2}+b^{2}+2\right)=0$.

If there is some integer solution $x=c$, then there must exist a real number d such that

$$
x^{2}-(a b) x+\left(a^{2}+b^{2}+2\right)=(x-c)(x-d)=x^{2}-(c+d) x+c d
$$

Comparing the coefficients on the left and right sides of this last equation, we know that $a b=c+d$, so that $d=a b-c$ is also an integer. Therefore, given any three integers a, b, and c such that $a^{2}+b^{2}+c^{2}+2=a b c$, we can replace c with $a b-c$ to obtain another solution.

We know that $(4,3,3)$ is a solution. So we can replace one of the 3 's with $3 \cdot 4-3=9$ to get the solution $(4,3,9)$. Since a, b, and c are interchangeable, We can obtain other solutions by repeatedly replacing the smallest number (which we will call c) by $a b-c$. Hence, listing the numbers in decreasing order at each step, we obtain the following solutions:

$$
(4,3,3) \longrightarrow(9,4,3) \longrightarrow(33,9,4) \longrightarrow(293,33,9) \longrightarrow(9660,293,33) .
$$

Since this process can be repeated indefinitely, there are infinitely many positive integer solutions (a, b, c) to the given equation.
4. (i) Given $\sqrt{x}=\sqrt{a}+\sqrt{b}$.

Suppose $x=k^{2} y$, with k and y positive integers, and $k>1$. We must prove that there exists at least one pair of positive integers (a, b) that satisfies the equation.

We have $\sqrt{x}=\sqrt{k^{2} y}=k \sqrt{y}$. Since $k>1$, then $k-1>0$. Therefore,

$$
\sqrt{x}=k \sqrt{y}=(k-1) \sqrt{y}+\sqrt{y}=\sqrt{(k-1)^{2} y}+\sqrt{y} .
$$

Since both $(k-1)^{2} y$ and y are both positive integers, setting $a=(k-1)^{2} y$ and $b=\mathrm{y}$ gives the desired result.

Now suppose a and b are both positive integers that satisfy $\sqrt{x}=\sqrt{a}+\sqrt{b}$.
We must show that x has a perfect square factor greater than 1 .

$$
\sqrt{x}=\sqrt{a}+\sqrt{b} \Rightarrow x=(\sqrt{a}+\sqrt{b})^{2}=a+b+2 \sqrt{a b}
$$

Since x is a positive integer, $\sqrt{a b}$ must be a perfect square. There are two possibilities: either (1) a and b are both perfect squares or (2) the non-square factors of a and b are equal.

1) If a and b both perfect squares, let $a=m^{2}$ and $b=n^{2}$. Then

$$
x=a+b+2 \sqrt{a b}=m^{2}+n^{2}+2 m n=(m+n)^{2} .
$$

Therefore, x has a perfect square factor.
2) If the non-square factors of a and b are equal, let $a=m^{2} p$ and $\mathrm{b}=n^{2} p$. Then

$$
x=a+b+2 \sqrt{a b}=m^{2} p+n^{2} p+2 m n p=p(m+n)^{2}
$$

and again, x has a perfect square factor.
Therefore, the equation has a solution (a, b) where a and b are both positive integers, if and only if x has a factor which is a perfect square greater than 1.
(ii) There are 250 values of $x \leq 1000$ that contain a factor of 4 . Similarly, the number of values of $x \leq 1000$ that, respectively, contain a factor of $3^{2}, 5^{2}, 7^{2}, 9^{2}, 11^{2}, 13^{2}$, $17^{2}, 19^{2}, 23^{2}, 29^{2}, 31^{2}$ is $111,40,20,8,5,3,2,1,1$, and 1 , for a total of 442 . However, some values, like $36=\left(2^{2}\right)\left(3^{2}\right)$, have been counted twice and must be subtracted from our total. The number of values of $x \leq 1000$ that, respectively, contain a factor of $\left(2^{2}\right)\left(3^{2}\right),\left(2^{2}\right)\left(5^{2}\right),\left(2^{2}\right)\left(7^{2}\right),\left(2^{2}\right)\left(11^{2}\right),\left(2^{2}\right)\left(13^{2}\right),\left(3^{2}\right)\left(5^{2}\right)$, and $\left(3^{2}\right)\left(7^{2}\right)$ is $27,10,5,2,1,4$, and 2 , a total of 51 such duplicates. However, the factor $\left(2^{2}\right)\left(3^{2}\right)\left(5^{2}\right)$ was counted three times, once in each group. Therefore, the final total is $442-51+1=392$.

5. Method 1:

We will refer to $\angle \mathrm{CAB}$ as $\angle \mathrm{A}$ and $\angle \mathrm{CBA}$ as $\angle \mathrm{B}$.
So that $\mathrm{m} \angle \mathrm{A}+\mathrm{m} \angle \mathrm{B}=90^{\circ}$.

Then $\mathrm{m} \angle \mathrm{P}=180-1 / 2(\mathrm{~m} \angle \mathrm{~A}+\mathrm{m} \angle \mathrm{B})=135^{\circ}$.
So that, $\mathrm{m} \angle \mathrm{PAB}+\mathrm{m} \angle \mathrm{PBA}=45$. Represent the measures of these two angles with α and $45-\alpha$.

Using the Law of Sines on $\triangle \mathrm{APB}$

$\frac{\mathrm{PA}}{\mathrm{PB}}=\frac{\sin (45-\alpha)}{\sin \alpha}=\frac{\sin 45 \cos \alpha-\cos 45 \sin \alpha}{\sin \alpha}=\sin 45 \cot \alpha-\cos 45$.
Now $\cot \alpha=\cot (1 / 2 \mathrm{~A})=\frac{1+\cos \mathrm{A}}{\sin \mathrm{A}}$ (using the appropriate half-angle formula)
But in $\triangle \mathrm{ABC}, \cos \mathrm{A}=\frac{6}{10}$ and $\sin \mathrm{A}=\frac{8}{10}$, making $\cot \alpha=\frac{1+\frac{6}{10}}{\frac{8}{10}}=2$.
Finally, $\frac{\mathrm{PA}}{\mathrm{PB}}=(\sin 45)(2)-\cos 45=\frac{\sqrt{2}}{2}(2)-\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}$.

Method 2:

Note that since point P is the intersection of the angle bisectors of $\triangle \mathrm{ABC}, \mathrm{P}$ is the incenter (the center of the inscribed circle).

Noting that the tangent segments to a circle from an external point are congruent, represent the lengths of the segments in the diagram as shown.

Then $6-x+8-x=10$ and $x=2$.
Therefore, right $\triangle \mathrm{ARP}$ has side lengths 2,4 , and $2 \sqrt{5}$, and right $\triangle \mathrm{BMP}$ has side lengths 2,6 , and $2 \sqrt{10}$.

Therefore, $\frac{P A}{P B}=\frac{2 \sqrt{5}}{2 \sqrt{10}}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}$.

