

THE 2013-2014 KENNESAW STATE UNIVERSITY HIGH SCHOOL MATHEMATICS COMPETITION PART II

C(3, 4)

x

y

В

А

Kennedavidition to scoring student responses based on whether a solution is correct and complete, ^{State}UNIV consideration will be given to elegance, simplicity, originality, and clarity of presentation.

Calculators are <u>NOT</u> permitted.

- 1. *A* and *B* both represent nonzero digits (not necessarily distinct). If the base ten numeral $\underline{A} \underline{B}$ divides, without remainder, the base ten numeral $\underline{A} \underline{0} \underline{B}$ (whose middle digit is zero), find, with proof, all possible values of $\underline{A} \underline{B}$.
- A and B are points on the positive *x* and positive *y* axes respectively and C is the point with coordinates (3, 4). Prove that the perimeter of triangle ABC is greater than 10.

- a. Find a solution (a, b, c) where a, b, and c are integers all larger than 10.
- b. Prove that there are infinitely many solutions (*a*, *b*, *c*) where *a*, *b*, and *c* are positive integers.
- 4. Consider the equation $\sqrt{x} = \sqrt{a} + \sqrt{b}$, where x is a positive integer.
 - a. Prove that the equation has a solution (a, b) where a and b are both positive integers, if and only if x has a factor which is a perfect square greater than 1.
 - b. If $x \le 1,000$, compute, with proof, the number of values of x for which the equation has at least one solution (a, b) where a and b are both positive integers.
- 5. In right triangle ABC, AC = 6, BC = 8 and AB = 10. PA and PB bisect angles A and B respectively. Compute, with proof, the ratio $\frac{PA}{PB}$.

SOLUTIONS – KSU MATHEMATICS COMPETITION – PART II 2013–14

1. Of course, this problem can be done by trial and error (there are only 81 possibilities), but we present a more elegant solution.

Suppose
$$\frac{A0B}{AB} = k$$
. Then $100A + B = 10Ak + Bk$ or
(i) $100A - 10Ak = Bk - B = B(k - 1)$

Since the left side of equation (i) is a multiple of 5, the right side must also be. Since $1 \le k \le 10$, the right side is positive and thus so is the left side. Then either 5 divides k - 1 or 5 divides *B*.

Suppose 5 divides k - 1. Then k = 6, so that (i) becomes 40A = 5B, or B = 8A. Therefore, A = 1, B = 8, and <u>A B = 18</u>.

Now suppose 5 divides *B*. Then B = 5, and (i) becomes 10A(10 - k) = 5(k - 1), or 2A(10 - k) = k - 1. From this, $A = \frac{k - 1}{2(10 - k)}$. Since the denominator is even, k - 1 must be even and k is odd. Trying k = 3, 5, 7, and 9, we find only <u>A B</u> = 15 and 45 corresponding to k = 7. 0 respectively. Therefore, the only possible values for A B

45 corresponding to k = 7, 9 respectively. Therefore, the only possible values for <u>*A B*</u> are 15, 18, and 45.

2. Consider the reflection images of C over the x and y axes. Call these points C_x and C_y , respectively, as shown. The coordinates of C_x are (3, -4) and of C_y are (-3, 4). The length of $\overline{CC_x}$ is 2(4) = 8 and the length of $\overline{CC_y}$ is 2(3) = 6.

Since $\triangle ABC$ is a right triangle, the length of $\overline{C_x C_y}$ is $\sqrt{6^2 + 8^2} = 10$. Also note that because C_y is a reflection image of C, BC = BC_y. Similarly, $AC = AC_x$. In quadrilateral ABC_yC_x , $C_yB + BA + AC_x > \overline{C_x C_y} = 10$. Therefore, by substitution, BC + BA + AC > 10.

3. Suppose we begin with two positive integers a and b, and we try to find a third integer x such that $a^2 + b^2 + x^2 + 2 = abx$. Then the problem can be thought of as finding an integer solution (if one exists) for the quadratic equation $x^2 - (ab)x + (a^2 + b^2 + 2) = 0$.

If there is some integer solution x = c, then there must exist a real number d such that

$$x^{2} - (ab)x + (a^{2} + b^{2} + 2) = (x - c)(x - d) = x^{2} - (c + d)x + cd$$

Comparing the coefficients on the left and right sides of this last equation, we know that ab = c + d, so that d = ab - c is also an integer. Therefore, given any three integers a, b, and c such that $a^2 + b^2 + c^2 + 2 = abc$, we can replace c with ab - c to obtain another solution.

We know that (4, 3, 3) is a solution. So we can replace one of the 3's with $3 \cdot 4 - 3 = 9$ to get the solution (4, 3, 9). Since *a*, *b*, and *c* are interchangeable, We can obtain other solutions by repeatedly replacing the smallest number (which we will call *c*) by ab - c. Hence, listing the numbers in decreasing order at each step, we obtain the following solutions:

$$(4, 3, 3) \longrightarrow (9, 4, 3) \longrightarrow (33, 9, 4) \longrightarrow (293, 33, 9) \longrightarrow (9660, 293, 33).$$

Since this process can be repeated indefinitely, there are infinitely many positive integer solutions (a, b, c) to the given equation.

4. (i) Given $\sqrt{x} = \sqrt{a} + \sqrt{b}$.

Suppose $x = k^2 y$, with k and y positive integers, and k > 1. We must prove that there exists at least one pair of positive integers (a, b) that satisfies the equation.

We have
$$\sqrt{x} = \sqrt{k^2 y} = k\sqrt{y}$$
. Since $k > 1$, then $k - 1 > 0$. Therefore,
 $\sqrt{x} = k\sqrt{y} = (k - 1)\sqrt{y} + \sqrt{y} = \sqrt{(k - 1)^2 y} + \sqrt{y}$.

Since both $(k-1)^2 y$ and y are both positive integers, setting $a = (k-1)^2 y$ and b = y gives the desired result.

Now suppose *a* and *b* are both positive integers that satisfy $\sqrt{x} = \sqrt{a} + \sqrt{b}$. We must show that *x* has a perfect square factor greater than 1.

$$\sqrt{x} = \sqrt{a} + \sqrt{b} \implies x = (\sqrt{a} + \sqrt{b})^2 = a + b + 2\sqrt{ab}$$

Since x is a positive integer, \sqrt{ab} must be a perfect square. There are two possibilities: either (1) a and b are both perfect squares or (2) the non-square factors of a and b are equal.

- 1) If a and b both perfect squares, let $a = m^2$ and $b = n^2$. Then $x = a + b + 2\sqrt{ab} = m^2 + n^2 + 2mn = (m + n)^2$. Therefore, x has a perfect square factor.
- 2) If the non-square factors of *a* and *b* are equal, let $a = m^2 p$ and $b = n^2 p$. Then $x = a + b + 2\sqrt{ab} = m^2 p + n^2 p + 2mnp = p(m+n)^2$ and again, *x* has a perfect square factor.

Therefore, the equation has a solution (a, b) where a and b are both positive integers, if and only if x has a factor which is a perfect square greater than 1.

(ii) There are 250 values of $x \le 1000$ that contain a factor of 4. Similarly, the number of values of $x \le 1000$ that, respectively, contain a factor of $3^2, 5^2, 7^2, 9^2, 11^2, 13^2$, $17^2, 19^2, 23^2, 29^2, 31^2$ is 111, 40, 20, 8, 5, 3, 2, 1, 1, and 1, for a total of 442. However, some values, like $36 = (2^2)(3^2)$, have been counted twice and must be subtracted from our total. The number of values of $x \le 1000$ that, respectively, contain a factor of $(2^2)(3^2), (2^2)(5^2), (2^2)(7^2), (2^2)(11^2), (2^2)(13^2), (3^2)(5^2), and (3^2)(7^2)$ is 27, 10, 5, 2, 1, 4, and 2, a total of 51 such duplicates. However, the factor $(2^2)(3^2)(5^2)$ was counted three times, once in each group. Therefore, the final total is 442 - 51 + 1 = 392.

5. <u>Method 1</u>:

We will refer to $\angle CAB$ as $\angle A$ and $\angle CBA$ as $\angle B$. So that $m \angle A + m \angle B = 90^{\circ}$.

Then $m \angle P = 180 - \frac{1}{2} (m \angle A + m \angle B) = 135^{\circ}$. So that, $m \angle PAB + m \angle PBA = 45$. Represent the measures of these two angles with α and $45 - \alpha$.

Using the Law of Sines on $\triangle APB$

 $\frac{PA}{PB} = \frac{\sin(45-\alpha)}{\sin\alpha} = \frac{\sin 45 \cos \alpha - \cos 45 \sin \alpha}{\sin \alpha} = \sin 45 \cot \alpha - \cos 45.$

Now $\cot \alpha = \cot (\frac{1}{2} A) = \frac{1 + \cos A}{\sin A}$ (using the appropriate half-angle formula)

But in $\triangle ABC$, $\cos A = \frac{6}{10}$ and $\sin A = \frac{8}{10}$, making $\cot \alpha = \frac{1 + \frac{6}{10}}{\frac{8}{10}} = 2$.

Finally,
$$\frac{PA}{PB} = (\sin 45)(2) - \cos 45 = \frac{\sqrt{2}}{2}(2) - \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2}$$

Method 2:

Note that since point P is the intersection of the angle bisectors of $\triangle ABC$, P is the incenter (the center of the inscribed circle).

Noting that the tangent segments to a circle from an external point are congruent, represent the lengths of the segments in the diagram as shown.

Then 6 - x + 8 - x = 10 and x = 2.

Therefore, right \triangle ARP has side lengths 2, 4, and $2\sqrt{5}$, and right \triangle BMP has side lengths 2, 6, and $2\sqrt{10}$.

Therefore,
$$\frac{PA}{PB} = \frac{2\sqrt{5}}{2\sqrt{10}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$
.

10