THE 2014-2015 KENNESAW STATE UNIVERSITY HIGH SCHOOL MATHEMATICS COMPETITION

PART II

Calculators are NOT permitted

1. Let us say that a person is "acquainted" with another person if each of them knows the other. Suppose there is a gathering of 100 people and that among every four people at the gathering there is at least one who is acquainted with the other three. Prove that in this gathering, there is at least one person who is acquainted with all the remaining 99 people.
2. Suppose that a and b are integers such that $a+2 b$ and $b+2 a$ are squares. Prove that a and b are each multiples of 3 .
3. Let $\mathrm{P}(x)$ be a polynomial with integer coefficients.
(i) Prove that it is not possible for $\mathrm{P}(7)=11$ and $\mathrm{P}(11)=13$.
(ii) Suppose that $\mathrm{P}(0)=\mathrm{P}(1)=1$. Prove that the equation $\mathrm{P}(x)=0$ has no integer solutions.
4. In the rectangular coordinate system, the line ℓ with equation $2 x+y=4$ is reflected over the y-axis, and its reflection image is named ℓ^{\prime}. The line m with equation $x+4 y=8$ is reflected over the x-axis, and its reflection image is named m^{\prime}. Let the four points of intersection of ℓ and ℓ^{\prime} with m and m^{\prime} be $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D. Prove that points A, B, C, and D all lie on a circle.
5. Point P is chosen randomly on side $A B$ of parallelogram ABCD . Line segment CP is extended to meet side DA extended at point M, and segment BM is constructed. Prove that the area of triangle BPM is equal to the area of triangle DAP.

SOLUTIONS - KSU MATHEMATICS COMPETITION - PART II 2014-15

1. Pick any person, say B. If B is acquainted with all the others, we are done.

Otherwise, there is a person C such that B is not acquainted with C . Then C is not acquainted with B. Randomly choose two other persons, A and D. According to the hypothesis, in the group $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$ of four people, either A or D is acquainted with the other three. Without loss of generality, suppose A is acquainted with the other three.

Now suppose D^{\prime} is any other person of the remaining 96 . Then either A or D^{\prime} is acquainted with the other three in $\left\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}^{\prime}\right\}$. Therefore, A and D^{\prime} are acquainted (remember the definition of acquainted says that it is symmetric). Thus A is acquainted with all the remaining 99 people.
2. Let $a+2 b=m^{2}$ and $2 a+b=n^{2}$, where m and n are integers. Then $m^{2}+n^{2}=3 a+3 b$, and so $m^{2}+n^{2}$ is a multiple of 3 . Any integer m can be written in the form $3 k, 3 k+1$, or $3 k-1$, where k is some integer. If $m=3 k$, then m^{2} is a multiple of 9 . If $m=3 k+1$ or $3 k-1$, then $m^{2}=9 k^{2} \pm 6 k+1=3\left(3 k^{2} \pm 2 k\right)+1$ and thus it is one more than a multiple of 3. Similarly, n^{2} is either a multiple of 9 or one more than a multiple of 3 .

If either m^{2} or n^{2} is not a multiple of 9 , then it follows that $m^{2}+n^{2}$ is either one or two more than a multiple of 3 . However, we have already shown that $m^{2}+n^{2}$ is a multiple of 3 . Therefore, both m^{2} and n^{2} are multiples of 9 .

Since $m^{2}+n^{2}=3(a+b)$ is a multiple of $9, a+b$ is a multiple of 3. Also, $\mathrm{a}-\mathrm{b}=\mathrm{n}^{2}-\mathrm{m}^{2}$ is a multiple of 3. It follows that $2 a=(a+b)+(a-b)$ is a multiple of 3 , and hence a is a multiple of 3. Also $b=(a+b)-a$ is a multiple of 3 . Hence both a and b are multiples of 3 .
3. (i) Let $\mathrm{P}(x)=\sum_{k=0}^{n} a_{k} x^{k}$. If $\mathrm{P}(7)=11$ and $\mathrm{P}(11)=13$, then

$$
\mathrm{P}(11)-\mathrm{P}(7)=\sum_{k=1}^{n} a_{k}\left(11^{k}-7^{k}\right)=13-11=2 .
$$

Since $x-y$ is a factor of $x^{k}-y^{k}$, then $\sum_{k=1}^{n} a_{k}\left(11^{k}-7^{k}\right)$ is divisible by $11-7=4$.
Therefore, 2 must be divisible by 4 , which is not possible.
(ii) Suppose b is an integer root. Then $\mathrm{P}(b)=0$ and $\mathrm{P}(x)=(x-\mathrm{b}) f(x)$, where $f(x)$ is a polynomial with integer coefficients. Thus, $1-b$ divides $\mathrm{P}(1)=1$. Therefore, either $1-b=1$ or $1-b=-1$.

If $1-b=1$, then $b=0$, which implies $\mathrm{P}(0)=0$. Contradiction, since $\mathrm{P}(0)=1$.
If $1-b=-1$, then $b=2$ and $\mathrm{P}(b)$ is a sum of powers of 2 and a constant term c . Since $\mathrm{P}(b)=0, c$ must be even. But $\mathrm{P}(0)=c$, so $\mathrm{P}(0)$ must be even. Contradiction, since $\mathrm{P}(0)=1$.

4. Method 1 (elegant and simple!!)

We must show that quadrilateral ABCD is cyclic.
The lines intersect on the x and y -axes as shown, and the axes bisect the angles formed. Represent the origin as point T , and the intersections of ℓ and m with the x and y-axes as S and R , respectively.

Let $\alpha=\mathrm{m} \angle \mathrm{APR}=\mathrm{m} \angle \mathrm{RPB}$ and $\beta=\mathrm{m} \angle \mathrm{BQT}=\mathrm{m} \angle \mathrm{TQC}$.

Since $\angle D A R$ is an exterior angle of $\triangle A P R$, we have $m \angle D A R=\alpha+m \angle A R P$.
Also, $\mathrm{m} \angle \mathrm{ARP}=\mathrm{m} \angle \mathrm{TRQ}$. Since $\triangle T R Q$ is a right triangle,

$$
\mathrm{m} \angle \mathrm{TRQ}=90-\mathrm{m} \angle \mathrm{RQT} \Rightarrow \mathrm{~m} \angle \mathrm{ARP}=90-\beta . \text { Therefore, } \mathrm{m} \angle \mathrm{DAR}=\alpha+90-\beta .
$$

Similarly, using $\triangle \mathrm{SCQ}$, we can show that $\mathrm{m} \angle \mathrm{DCB}=\beta+90-\alpha$.

Thus, $\mathrm{m} \angle \mathrm{DAR}+\mathrm{m} \angle \mathrm{DCB}=(\alpha+90-\beta)+(\beta+90-\alpha)=180$. Since these are a pair of opposite angles of quadrilateral ABCD , and they are supplementary, the quadrilateral is cyclic.

Method 2 (brute force!!)

The equation of line ℓ^{\prime} is $-2 x+y=4$ and the equation of line m^{\prime} is $x-4 y=8$.
By solving the four pairs of equations simultaneously, we obtain the coordinates of the four points, as pictured above: $\mathrm{A}\left(\frac{-8}{9}, \frac{20}{9}\right), \mathrm{B}\left(\frac{8}{7}, \frac{12}{7}\right), \mathrm{C}\left(\frac{24}{9}, \frac{-12}{9}\right)$, and $\mathrm{D}\left(\frac{-24}{7}, \frac{-20}{7}\right)$. If the points were to lie on a circle, then quadrilateral ABCD would be cyclic. The sides of the quadrilateral would be chords of the circle, and so would the diagonals. The center of the circle would be the intersection of the perpendicular bisectors of any two of these chords.
We will use diagonals $\overline{\mathrm{AC}}$ and $\overline{\mathrm{BD}}$, whose slopes are -1 and 1 , respectively.
The midpoint of $\overline{\mathrm{AC}}$ has coordinates $\left(\frac{8}{9}, \frac{4}{9}\right)$. Therefore, the equation of its perpendicular bisector is $y-\frac{4}{9}=1\left(x-\frac{8}{9}\right) \quad$ or $\quad 9 x-9 y=4$.
The midpoint of $\overline{\mathrm{BD}}$ has coordinates $\left(\frac{-8}{7}, \frac{-4}{7}\right)$. Therefore, the equation of its perpendicular bisector is $y+\frac{4}{7}=-1\left(x+\frac{8}{7}\right)$ or $7 x+7 y=-12$.

The common solution to these two equations (the hypothetical center of the circle) is $\mathrm{P}\left(\frac{-40}{63}, \frac{-68}{63}\right)$.

Now, rewriting the coordinates of points $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D with a common denominator 63 ,

$$
\mathrm{A}\left(\frac{-56}{63}, \frac{140}{63}\right), \mathrm{B}\left(\frac{72}{63}, \frac{108}{63}\right), \mathrm{C}\left(\frac{168}{63}, \frac{-84}{63}\right) \text {, and } \mathrm{D}\left(\frac{-216}{63}, \frac{-180}{63}\right) \text {, }
$$

and using the distance formula to find the lengths of $\overline{\mathrm{AP}}, \overline{\mathrm{BP}}, \overline{\mathrm{CP}}$, and $\overline{\mathrm{DP}}$, we obtain:

$$
\mathrm{AP}=\sqrt{\frac{16^{2}}{63^{2}}+\frac{(-208)^{2}}{63^{2}}}, \mathrm{BP}=\sqrt{\frac{112^{2}}{63^{2}}+\frac{176^{2}}{63^{2}}}, \mathrm{CP}=\sqrt{\frac{208^{2}}{63^{2}}+\frac{(-16)^{2}}{63^{2}}}, \mathrm{DP}=\sqrt{\frac{176^{2}}{63^{2}}+\frac{112^{2}}{63^{2}}} .
$$

Since $16^{2}+208^{2}=43520=112^{2}+176^{2}, A, B, C$, and D are all the same distance from P. Therefore, all four points lie on a circle.
5. Let $\mathrm{AP}=a$ and $\mathrm{BP}=b$, so that $\mathrm{CD}=a+b$. Since PA is parallel to CD, \triangle CDM is similar to \triangle PAM. Therefore,

$$
\frac{\mathrm{DM}}{\mathrm{AM}}=\frac{\mathrm{CD}}{\mathrm{PA}} \quad \text { or } \quad \frac{\mathrm{DM}}{\mathrm{AM}}=\frac{a+b}{a}
$$

Since $\mathrm{DM}=\mathrm{DA}+\mathrm{AM}$, this last equation can be rewritten as

$$
\frac{\mathrm{AM}+\mathrm{AD}}{\mathrm{AM}}=\frac{a+b}{a} \Rightarrow 1+\frac{\mathrm{DA}}{\mathrm{AM}}=1+\frac{b}{a} \Rightarrow \frac{\mathrm{DA}}{\mathrm{AM}}=\frac{b}{a} .
$$

Consider $\triangle \mathrm{DAP}$ and $\triangle \mathrm{PAM}$. They have the same altitude from point P .
Therefore the ratio of their areas is equal to the ratio of their bases (DA and AM).
Thus, $\frac{\text { area of } \triangle \mathrm{DAP}}{\text { area of } \triangle \mathrm{PAM}}=\frac{\mathrm{DA}}{\mathrm{AM}}=\frac{b}{a}$

Similarly, $\triangle \mathrm{BPM}$ and $\triangle \mathrm{PAM}$ have the same altitude from point M , so the ratio of their areas is equal to the ratio of their bases (BP and PA).
Thus, $\frac{\text { area of } \triangle \mathrm{BPM}}{\text { area of } \triangle \mathrm{PAM}}=\frac{\mathrm{BP}}{\mathrm{AM}}=\frac{b}{a}$.
Therefore, $\frac{\text { area of } \triangle \mathrm{DAP}}{\text { area of } \triangle \mathrm{PAM}}=\frac{\text { area of } \triangle \mathrm{BPM}}{\text { area of } \triangle \mathrm{PAM}}$ from which the area of triangle DAP and the area of triangle BPM are equal.

