College of Science and Mathematics

Department of Mathematics

Time allowed: $\mathbf{2}$ hours

1. Let x, y, and A all be positive integers with $x \neq y$.
a) Prove that there are infinitely many ordered triples (x, y, A) for which $x^{3}+y^{3}=A^{2}$.
b) If x, y, and A are all less than 30 , find one ordered triple (x, y, A) for which $x^{3}-y^{3}=A^{2}$.
2. In Mr. Smith's garden, exactly $1 / 3$ of the flowers are red, $1 / 3$ of the flowers are blue, and $1 / 3$ of the flowers are yellow. Mr. Smith, being a mathematician, discovered that the probability that a randomly picked bunch of three flowers contains exactly 1 red flower is greater than one-half. The same is true for the other two colors as well. Compute, with proof, the largest number of flowers that could be in Mr. Smith's garden.
3. Consider the polynomial $P(x)=p x^{2}-q x+p$, where p and q are prime numbers. Find, with proof, all possible ordered pairs (p, q) such that the equation $P(x)=0$ has rational solutions.
4. Let $\langle x\rangle$ denote the fractional part of the real number x so that, for example, $\left\langle\frac{12}{5}\right\rangle=\frac{2}{5}$, $\langle 3\rangle=0$, and $\langle\pi\rangle=\pi-3$. Find, with proof, the smallest positive real number x, larger than 1, such that $\langle x\rangle+\left\langle\frac{1}{x}\right\rangle=1$.
5. Triangle ABC has side lengths a, b, and c, where a, b, and c are consecutive integers with $a<b<c$. A median drawn to one side of $\triangle \mathrm{ABC}$ divides $\triangle \mathrm{ABC}$ into two triangles, at least one of which is isosceles. Compute, with proof, all possible ordered triples (a, b, c).

Solutions

1. a) Multiplying 9 by any number of the form $r^{2 k}$, where r is a positive integer will produce a perfect square $\left(3 \cdot r^{k}\right)^{2}$. Let k be a multiple of 3 . Then $k=3 m$, where m is a positive integer, and

$$
9\left(r^{2 k}\right)=\left(1+2^{3}\right)\left(r^{2 k}\right)=r^{2 k}+2^{3} r^{2 k}=r^{6 m}+2^{3} r^{6 m}=\left(r^{2 m}\right)^{3}+\left(2 r^{2 m}\right)^{3}
$$

Therefore, the ordered triple $(x, y, A)=\left(r^{2 m}, 2 r^{2 m}, 3 \cdot r^{3 m}\right)$ satisfies the given equation for all positive integers m. More specifically, if $m=1$, the ordered triple $\left(r^{2}, 2 r^{2}, 3 \cdot r^{3}\right)$ satisfies the given equation. Thus there are infinitely many such ordered triples.
b) Factoring, we obtain $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)=A^{2}$. Let $x-y=1$. Then $\left(x^{2}+x y+y^{2}\right)=A^{2}$. Substituting $y=x-1$ and simplifying, we obtain $3 x^{2}-3 x+1=A^{2} \Rightarrow 3 x(x-1)+1=A^{2}$. Thus we are looking for two consecutive positive integers (if any exist) whose product, when multiplied by 3 , is one less than a perfect square. Since x, y, and A are all less than 30 , a little trial and error shows that when $x=8, A^{2}=3(8)(7)+1=169=13^{2}$. Therefore, $(8,7,13)$ is a solution.
(Note: the only other solution where x, y, and A are all less than 30 is $(10,6,28)$.)
(Note also that if we don't require x, y, and A to be less than $30,(105,104,181)$ also works. Are there infinitely many solutions?)
2. Let R denote the number of red flowers and N the total number of flowers in the garden. The probability of picking 1 red flower when we pick a bunch of three flowers is

$$
P(N)=\frac{\binom{R}{1}\binom{N-R}{2}}{\binom{N}{3}}=\frac{3 R(N-R)(N-1-R)}{N(N-1)(N-2)}
$$

Since $1 / 3$ of all flowers are red we have that $R=\frac{N}{3}$. Substituting and simplifying,

$$
P(N)=\frac{2 N(2 N-3)}{9(N-1)(N-2)}
$$

Since we are told that the probability of picking exactly one red flower in a bunch of three is greater than $1 / 2$,

$$
\frac{2 N(2 N-3)}{9(N-1)(N-2)}>\frac{1}{2}
$$

Simplifying, we obtain $N^{2}-15 N+18<0$
Using the quadratic formula we find N is between $\frac{15-3 \sqrt{17}}{2}$ and $\frac{15+3 \sqrt{17}}{2}$.
Since N is an integer and also a multiple of three, the largest possible $N=12$.
3. If $x<0$, then the left side of the equation $p x^{2}-q x+p=0$ is positive. Therefore, If the equation has real solutions, then $x>0$. Let $x=\frac{m}{n}$ where m and n are positive integers and $\frac{m}{n}$ is in lowest terms (i.e. m and n have no common factors other than 1). Substituting $x=\frac{m}{n}$ into the equation, and multiplying by n^{2} to clear fractions, we obtain

$$
p m^{2}-q m n+p n^{2}=0 \text { from which } p n^{2}=q m n-p m^{2}=m(q n-p m)
$$

Therefore, m divides $p n^{2}$. But since m and n have no common factors, m must divide p. Similarly n must divide p as well. Since p is prime, $x=\frac{m}{n}=1, p$, or $\frac{1}{p}$.
If $x=1$, then $q=2 p$, which is impossible since q is prime. If $x=\frac{1}{p}$ or p, then the quadratic equation yields $q=p^{2}+1$. If p is odd, then q is an even number ≥ 10, again a contradiction since q is prime. Therefore, p must be even, so $p=2$ and $q=5$, and the only possible ordered pair $(p, q)=(2,5)$. Thus, $P(x)$ is $2 x^{2}-5 x+2$, and the roots of $P(x)=0$ are 2 and $\frac{1}{2}$.
4. Let $x>1$ be a real number satisfying $\langle x\rangle+\left\langle\frac{1}{x}\right\rangle=1$. If n denotes the greatest integer in x, then $x=n+\langle x\rangle$, and obviously $n \geq 1$. Since $0<\frac{1}{x}<1$, we have $\left\langle\frac{1}{x}\right\rangle=\frac{1}{x}$. Thus $\mathrm{x}+\frac{1}{x}=\mathrm{n}+\langle x\rangle+\left\langle\frac{1}{x}\right\rangle=n+1$. Therefore, x is a solution to the quadratic equation $x^{2}-(n+1) x+1=0$. Using the quadratic formula, we find $x=\frac{(n+1) \pm \sqrt{(n+1)^{2}-4}}{2}$.
Since $\mathrm{x}>1$, we can eliminate the minus sign, so that $x=\frac{(n+1)+\sqrt{(n+1)^{2}-4}}{2}$.
If $n=1$, then $x=1$, which is a contradiction. Thus $n \geq 2$, and the potentially smallest x occurs when $n=2$ and $x=\frac{3+\sqrt{5}}{2}$. To see that this number actually satisfies the given condition, note that $x \approx 2.6$, so $\langle x\rangle=x-2=\frac{-1+\sqrt{5}}{2}$. Also $\left\langle\frac{1}{x}\right\rangle=\frac{1}{x}=\frac{2}{3+\sqrt{5}}=\frac{3-\sqrt{5}}{2}$.
Therefore, $\langle x\rangle+\left\langle\frac{1}{x}\right\rangle=\frac{-1+\sqrt{5}}{2}+\frac{3-\sqrt{5}}{2}=1$. Thus the smallest value of x is $\frac{3+\sqrt{5}}{2}$.
5. There are only three such ordered triples: $(2,3,4),(3,4,5)$, and $(7,8,9)$.

If $\triangle \mathrm{ABC}$ has sides of length 2,3 , and 4 , then clearly the median to the side of length 4 creates an isosceles triangle with legs of length 2 .

If $\triangle \mathrm{ABC}$ has sides of length 3,4 , and 5 , it is a right triangle. The median to the hypotenuse of a right triangle is always half the length of the hypotenuse. Therefore, the median to the hypotenuse divides the triangle into two isosceles triangles with legs of length $2 \frac{1}{2}$.

Now represent the side lengths of $\Delta \mathrm{ABC}$ by $n-1, n$, and $n+1$.
Case 1: The median is drawn to the shortest side.
Since $A M<A B$, the only way either $\triangle A M C$ or
$\Delta \mathrm{AMB}$ could be isosceles is if $\mathrm{AM}=n$ or $\mathrm{AM}=\frac{n-1}{2}$.

Using the law of cosines on $\triangle \mathrm{ABC}$,

$$
(n+1)^{2}=n^{2}+(n-1)^{2}-2 n(n-1) \cos C \text { from which } \cos C=\frac{n-4}{2 n-2} .
$$

Using the law of cosines on $\triangle \mathrm{AMC}$,

$$
\mathrm{AM}^{2}=n^{2}+\frac{(n-1)^{2}}{4}-2(n)\left(\frac{n-1}{2}\right) \cos C
$$

Suppose AM $=n$. Then

$$
n^{2}=n^{2}+{\frac{(n-1)^{2}}{4}}^{2}-(n)(n-1) \cos C \text { from which } \cos C=\frac{n-1}{4 n} .
$$

Therefore, $\frac{n-1}{4 n}=\frac{n-4}{2 n-2} \Rightarrow n^{2}-2 n-1=0$ which has no integer solutions.

Suppose $\mathrm{AM}=\frac{n-1}{2}$. Again using the law of cosines on $\triangle \mathrm{AMC}$,

$$
\left(\frac{n-1}{2}\right)^{2}=n^{2}+\frac{(n-1)^{2}}{4}-2(n)\left(\frac{n-1}{2}\right) \cos C \text { from which } \cos C=\frac{n}{n-1}
$$

Therefore, $\frac{n}{n-1}=\frac{n-4}{2 n-2}$, whose only solution is $n=-4$. Thus the median cannot be to the shortest side.

Case 2: The median is drawn to the side of length n.
Since $B M<A B$, the only way either $\triangle A M C$ or $\triangle \mathrm{AMB}$ could be isosceles is if $\mathrm{BM}=n-1$ or $\mathrm{BM}=\frac{n}{2}$.

From case 1, we know that $\cos C=\frac{n-4}{2 n-2}$.
Using the law of cosines on $\triangle \mathrm{BMC}, \mathrm{BM}^{2}=\left(\frac{n}{2}\right)^{2}+(n-1)^{2}-2\left(\frac{n}{2}\right)(n-1) \cos C$,
Substituting $\cos C=\frac{n-4}{2 n-2}$, we obtain

$$
\mathrm{BM}^{2}=\left(\frac{n}{2}\right)^{2}+(n-1)^{2}-2\left(\frac{n}{2}\right)(n-1)\left(\frac{n-4}{2 n-2}\right) \text { from which } \mathrm{BM}^{2}=\frac{3 n^{2}+4}{4}
$$

If $\mathrm{BM}=\frac{n}{2}$, then $\left(\frac{n}{2}\right)^{2}=\frac{3 n^{2}+4}{4}$, which has no real solutions.
If $\mathrm{BM}=n-1$, then $(n-1)^{2}=\frac{3 n^{2}+4}{4}$ from which $n^{2}-8 n=0$ and $n=8$ yielding a triangle with sides of length 7,8 , and 9 .

Case 3: The median is drawn to the longest side.
If $\mathrm{AM}=\mathrm{MB}=\mathrm{CB}$, then $\frac{n+1}{2}=n-1$ from which $n=2$.
This gives a 2, 3, 4 triangle, which we have already considered.

If $\mathrm{CM}=\mathrm{MB}=\mathrm{AM}$, then triangle ABC is a right triangle and the only right triangle with side lengths that are consecutive integers is the $3,4,5$ triangle already considered.

The only other possibilities for $\triangle \mathrm{AMC}$ or $\Delta \mathrm{AMB}$ to be isosceles is if $\mathrm{CM}=n$ or $n-1$. Using the law of cosines on $\triangle \mathrm{ABC}$,

$$
(n-1)^{2}=n^{2}+(n+1)^{2}-2 n(n+1) \cos A \text { from which } \cos A=\frac{n+4}{2 n+2}
$$

Using the law of cosines on $\triangle \mathrm{AMC}$,

$$
\begin{aligned}
\mathrm{CM}^{2}= & n^{2}+\left(\frac{n+1}{2}\right)^{2}-2 n\left(\frac{n+1}{2}\right) \cos A=n^{2}+\left(\frac{n+1}{2}\right)^{2}-2 n\left(\frac{n+1}{2}\right)\left(\frac{n+4}{2 n+2}\right)= \\
& n^{2}+\left(\frac{n+1}{2}\right)^{2}-\frac{n(n+4)}{2}
\end{aligned}
$$

If $\mathrm{CM}=n$, then $n^{2}=n^{2}+\left(\frac{n+1}{2}\right)^{2}-\frac{n(n+4)}{2}$. This becomes $n^{2}+6 n-1=0$, which has no integer solutions.
If CM $=n-1$, then $(n-1)^{2}=n^{2}+\left(\frac{n+1}{2}\right)^{2}-\frac{n(n+4)}{2}$. This becomes $n^{2}-2 n+3=0$, which has no real solutions.

Therefore, the only triangles with the given properties have sides of lengths $(2,3,4),(3,4,5)$, and
$(7,8,9)$. The three triangles are shown below.

