
 
 
 
 
 
 
1. Let m be a three-digit integer with distinct digits.  Find all such integers m which are equal 

to the average (arithmetic mean) of the six numbers obtained by forming all possible 
arrangements of the digits of m.  Prove that you have found them all. 

 
 
2. A bag contains N balls, some of which are red and the rest yellow.  Two balls are drawn  

randomly from the bag, without replacement.  If the probability that the two balls are  
the same color is equal to the probability that they are different colors, compute, with  
proof, the set of all possible values of N. 

 
 
 
3. Let P(x) be a polynomial with integer coefficients. Suppose that P(0) is an odd integer and  

that P(1) is also an odd integer.  Prove that P(c) is an odd integer for all integers c.  
 
 
 
4. Let S = a set of consecutive positive integers beginning with 1.  All subsets of S that do not 

contain two consecutive numbers are formed.  The product of the elements in each subset is 
calculated.  (Note: if a subset contains only one number, the product of its elements is the 
number itself.)  Let N = the sum of the squares of all these products.   

 
For example, if S = {1, 2, 3}, then the allowable subsets are {1}, {2}, {3}, and {1, 3}. The 
products are 1, 2, 3, and 3, and N = 12 + 22 + 32 + 32 = 23. 
 
Find, with proof, the value of N when S = {1, 2, 3, …, 16}. 

 
 
 
5.         In equilateral ∆ABC, points M1, M2, M3, … M𝑛𝑛−1 divide altitude BD���� 
            into n segments of equal length (n > 1), with M1 closest to point B.   
             

            Segment AM1������ is extended to meet side BC���� at point P.   
 

            Prove that  
AM1
M1P

  = 2n – 1. 
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Solutions  
 
1. Suppose m = 100a + 10b +c.  If we arrange the digits of m in all six possible ways, 

then each of a, b, and c will occur exactly twice in the 1’s place, twice in the 10’s 
place, and twice in the 100’s place.  Thus, the sum of the six arrangements is 
 

2(a + b + c) (100 + 10 + 1) = 222(a + b + c).   
 
Hence, the arithmetic mean of these six numbers is 37(a + b + c).   
 
Since we are given 100a + 10b + c = 37(a + b + c), we have 7a = 3b + 4c .   

 
Method 1:  7a = 3b + 4c   ⇒    3b + 4c   is a multiple of 7.  Make a chart, remembering  
that all three digits are distinct.  The values of c in the middle column of the chart are  
the only ones for which 3b + 4c is a multiple of 7.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Therefore, there are a total of six values of m:  370, 407, 481, 518, 592, and 629. 

 
 
Method 2:   7a = 3b + 4c   ⇒   7(a – c) = 3(b – c). 

 
Now, -9 ≤  b – c ≤  9 and 7 divides b – c.  There are just three possibilities.   
 
If b – c = 0, then a = b = c, which cannot be since the digits of m are all different.   

 
If b – c = 7, then a – c = 3.  In this case b = c + 7 and a = c + 3, leaving only three  
possibilities for c, namely 0, 1, and 2.  These yield m = 370, 481, and 592.   

 
Finally, if   b – c = –7, then a – c = –3.  In this case b = c – 7 and a = c – 3, again leaving  
only three possibilities for c, namely 7, 8, and 9.    These yield m = 407, 518, and 629.  
 
Therefore, there are a total of six values of m:  370, 407, 481, 518, 592, and 629. 

 
 
 

b 3b + 4c c 7a = 3b + 4c a 
0 4c 7 28 4 
1 4c + 3 8 35 5 
2 4c + 6 9 42 6 
3 4c + 9 none   
4 4c + 12 none   
5 4c + 15 none   
6 4c + 24 none   
7 4c + 21 0 21 3 
8 4c + 24 1 28 4 
9 4c + 27 2 35 5 

 



 
2. Let K = the number of red balls and N – K the number of yellow balls.  Then, the probability 
  

of drawing two balls of the same color is �𝐾𝐾
𝑁𝑁
� �𝐾𝐾−1

𝑁𝑁−1
� + �𝑁𝑁−𝐾𝐾

𝑁𝑁
� �𝑁𝑁−𝐾𝐾−1

𝑁𝑁−1
�.  Since the 

probability of drawing two balls of the same color is equal to the probability of drawing two 
balls of different colors, each probability is one-half.  Therefore, 
 

�𝐾𝐾
𝑁𝑁
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Simplifying, 4𝐾𝐾2 − 4𝑁𝑁𝐾𝐾 + 𝑁𝑁(𝑁𝑁 − 1) = 0. 

Using the quadratic formula, the roots of this equation are K = 
𝑁𝑁+√𝑁𝑁
2

 and K = 𝑁𝑁−√𝑁𝑁
2

. 
 
Noting that N and √𝑁𝑁  have the same parity if N is a perfect square, then K will be an integer  
if and only if N is a perfect square.  The required condition is satisfied for all values of N which 
are squares of integers and no others.  (Note:  If N = 1, the probability of picking two balls of 
the same or of different colors is zero, which still works.) 
 

3. Let P(x) = 𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛 + 𝑎𝑎𝑛𝑛−1𝑥𝑥𝑛𝑛−1 + ⋯+ 𝑎𝑎1𝑥𝑥 + 𝑎𝑎0.   
 
First, we prove that the number of odd integers in the set {𝑎𝑎𝑛𝑛, 𝑎𝑎𝑛𝑛−1, … ,𝑎𝑎1} is even. 
 
Substituting, P(0) = 𝑎𝑎0  and  P(1) = 𝑎𝑎𝑛𝑛 + 𝑎𝑎𝑛𝑛−1 + ⋯+ 𝑎𝑎1 + 𝑎𝑎0. 
Thus, by the given information, 𝑎𝑎0 is odd and 𝑎𝑎𝑛𝑛 + 𝑎𝑎𝑛𝑛−1 + ⋯+ 𝑎𝑎1 + 𝑎𝑎0 is odd.  
 
Since the difference between two odd integers is always even, 𝑎𝑎𝑛𝑛 + 𝑎𝑎𝑛𝑛−1 + ⋯+ 𝑎𝑎1 is even.   
This can only happen if the number of odd integers in the set {𝑎𝑎𝑛𝑛,𝑎𝑎𝑛𝑛−1, … ,𝑎𝑎1} is even. 
 
Consider P(c) = 𝑎𝑎𝑛𝑛𝑐𝑐𝑛𝑛 + 𝑎𝑎𝑛𝑛−1𝑐𝑐𝑛𝑛−1 + ⋯+ 𝑎𝑎1𝑐𝑐 + 𝑎𝑎0. 
 
Suppose c is even.  Then 𝑎𝑎𝑛𝑛𝑐𝑐𝑛𝑛 + 𝑎𝑎𝑛𝑛−1𝑐𝑐𝑛𝑛−1 + ⋯+ 𝑎𝑎1𝑐𝑐 = 𝑐𝑐(𝑎𝑎𝑛𝑛𝑐𝑐𝑛𝑛−1 + 𝑎𝑎𝑛𝑛−1𝑐𝑐𝑛𝑛−2 … + 𝑎𝑎1)  
is even.  Adding 𝑎𝑎0, which is odd, makes P(c) odd. 
 
Suppose c is odd.   Since {𝑎𝑎𝑛𝑛, 𝑎𝑎𝑛𝑛−1, … , 𝑎𝑎1} contains an even number of odd integers, 
{𝑎𝑎𝑛𝑛𝑐𝑐𝑛𝑛,𝑎𝑎𝑛𝑛−1𝑐𝑐𝑛𝑛−1, … ,𝑎𝑎1𝑐𝑐} contains an even number of products of odd integers, and  
therefore, must have an even sum. 
 
Therefore, 𝑎𝑎𝑛𝑛𝑐𝑐𝑛𝑛 + 𝑎𝑎𝑛𝑛−1𝑐𝑐𝑛𝑛−1 + ⋯+ 𝑎𝑎1𝑐𝑐  is even and since 𝑎𝑎0 is odd,  
P(c) = 𝑎𝑎𝑛𝑛𝑐𝑐𝑛𝑛 + 𝑎𝑎𝑛𝑛−1𝑐𝑐𝑛𝑛−1 + ⋯+ 𝑎𝑎1𝑐𝑐 + 𝑎𝑎0 must be odd. 
 
Thus, P(c) is odd for all integers c. 

  
 
 



 
4. To get an idea, we first look at simpler versions of the problem. 

 
Consider the set {1, 2}.  The allowable subsets are {1}, {2}.  The products are 1, 2, and  
the sum of their squares is 5. 
 
For the set {1, 2, 3}, we already know the sum of the squares is 23. 
 
Consider the set {1, 2, 3, 4}.  The allowable subsets are {1}, {2}, {3}, {4}, {1, 3},  
{2, 4} and {1, 4}.  The products are 1, 2, 3, 4, 3, 8, 4, and the sum of their squares is 119. 
 
Consider the set {1, 2, 3, 4, 5}.  The allowable subsets are {1}, {2}, {3}, {4}, {5}, {1, 3},  
{1, 4}, {1, 5}, {2, 4}, {2, 5}, {3, 5} and {1, 3, 5}.  The products are 1, 2, 3, 4, 5, 3, 4, 5, 8, 10, 
15, and 15, and the sum of their squares is 719. 

 
Observe that the sum of the squares of the products appears to be (n + 1)! – 1, where n is the 
number of elements in the set S.  We prove that this expression is correct by mathematical 
induction. 
 
For n = 1, the formula is trivially true. 
 
Assume that for a set consisting of the first K positive integers, the desired result is  
(K + 1)! – 1. 
 
Consider the set consisting of the first (K + 1) positive integers.  Split the collection of  
subsets with no consecutive numbers into two subcollections: subsets containing K + 1,  
and those that don’t.   
 
Each subset in the first subcollection can be represented as the union of {K + 1} and the  
non-empty subsets of {1, 2, 3, …, K–1} which do not contain consecutive numbers.   
Therefore, by the induction hypothesis, the sum of the squares of the products from this first 
subcollection is (𝐾𝐾 + 1)2(𝐾𝐾! − 1) + (𝐾𝐾 + 1)2.  Similarly, the sum of the squares of the 
products from the second subcollection is (K + 1)! – 1.   
 
Adding (𝐾𝐾 + 1)2(𝐾𝐾! − 1) + (𝐾𝐾 + 1)2 and (K + 1)! – 1 and simplifying, we obtain (K + 2)! – 1. 
Therefore, the desired value is 17! – 1 (which, by the way, is equal to 333,688,130,096,000). 

 
  



5.      Method 1 
 

Let AB = BC = a and BP = y 
 

            Then the length of altitude BD is 𝑎𝑎√3
2

  and the length  

             of  BM1������ is 
𝑎𝑎√3 
2𝑛𝑛

 
 

Since BM1 is an angle bisector in ∆ABP,  
 
AM1
M1P 

 = 
AB
BP

 = 𝑎𝑎
𝑦𝑦
. 

 
The area of ∆ABM1 = 1

2
(AB)(BM1)sin30 =  1

2
(𝑎𝑎)BM1 �

1
2
� = 1

4
(𝑎𝑎)BM1. 

 
Similarly, the area of ∆BM1P = 1

2
(BP)(BM1)sin30 = 1

2
(𝑦𝑦)BM1 �

1
2
� = 1

4
(𝑦𝑦)BM1 

 

and the area of ∆ABP = = 1
2

(AB)(BP)sin60 = 1
2
𝑎𝑎y
√3 
2

 = 1
4
𝑎𝑎𝑦𝑦√3 . 

 
Therefore, since area ∆ABM1 + area ∆BM1P = area ∆ABP,  

 
1
4
𝑎𝑎BM1 + 1

4
𝑦𝑦BM1 = 1

4
𝑎𝑎𝑦𝑦√3   ⇒   BM1 (a + y) = ay√3  ⇒    

𝑎𝑎√3 
2𝑛𝑛

(a + y) = ay√3 
 

Thus, 
𝑎𝑎+𝑦𝑦
2𝑛𝑛

 = y, from which  a = 2ny – y   ⇒    
𝑎𝑎
𝑦𝑦
 = 2n – 1 = 

AM1
M1P 

. 
 
Method 2 (from Russell Emerine – Walton High School) 
 
  Reflect ∆ABC over side AC and label the image of B point E. 
  
 Let BM1= x.  Then M1D = (n – 1)x and DE = nx by symmetry, 

So that M1E = (2n – 1)x. 
 
 Since m∠AEM1 = m∠PBM1 = 30, and ∠BM1P and ∠AM1E 
 Are congruent vertical angles, ∆BM1P ∼ ∆EM1A. 
 

 Therefore, 
AM1
M1P

= EM1
BM1

= (2𝑛𝑛−1)𝑥𝑥
𝑥𝑥

 = 2n – 1.   
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            Method 3 
 
            Represent the length of the sides of the equilateral triangle as 2a.  
 

            Then the length of altitude BD is 𝑎𝑎√3, the length 

            of  BM1������ is 
𝑎𝑎√3 
𝑛𝑛

, and the length of M1D������ is 
(𝑛𝑛−1)𝑎𝑎√3 

𝑛𝑛
. 

 

            Using the Pythagorean Theorem on ∆ADM1,   

            AM1 = 
𝑎𝑎√4𝑛𝑛2−6𝑛𝑛+3

𝑛𝑛
 . 

 

            Let m∠AM1D = m∠BM1P = α . 
 
            From right triangle ADM1, 
 

sin α = 
AD
AM1

 = 𝑛𝑛
√4𝑛𝑛2−6𝑛𝑛+3

  and 

            cos α = 
M1D
AM1

 = (𝑛𝑛−1)√3 
√4𝑛𝑛2−6𝑛𝑛+3

 . 
 

             Let m∠BPM1 = β .  Noting that m∠M1BP = 30, then β = 180 – (30 + α). 
 

             Hence, sin β = sin [180 – (30 + α)] = sin (30 + α) = (sin 30)(cos α) + (cos 30)(sin α). 
 

             Thus, sin β = 
1
2

 
(𝑛𝑛−1)√3 

√4𝑛𝑛2−6𝑛𝑛+3
 + 

√3
2

 
𝑛𝑛

√4𝑛𝑛2−6𝑛𝑛+3
 = √3(2𝑛𝑛−1)

2√4𝑛𝑛2−6𝑛𝑛+3
 

 

             Using the Law of Sines on ∆BPM1, 
sin30
M1P

 = 
sinβ
BM1

   ⇒   
1
2

M1P
 = 

√3(2𝑛𝑛−1)

2�4𝑛𝑛2−6𝑛𝑛+3
𝑎𝑎√3 
𝑛𝑛

 . 

              Hence, M1P = 
𝑎𝑎√4𝑛𝑛2−6𝑛𝑛+3
𝑛𝑛(2𝑛𝑛−1)

 .  Finally,  
AM1
M1P 

 = 
𝑎𝑎�4𝑛𝑛2−6𝑛𝑛+3

𝑛𝑛
𝑎𝑎�4𝑛𝑛2−6𝑛𝑛+3

𝑛𝑛(2𝑛𝑛−1)

 = 2n – 1. 
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