
 

 

 

 

 

 

 
 

 

1. Four numbers are in arithmetic sequence.  If the second number is decreased by 3  

  and the fourth number is increased by 12, the four numbers, in the same order, would  

then be in geometric sequence.  Find all possible four number arithmetic sequences  

and prove that you have found them all. 
 

 

 

2. Let f(x) = 𝑥2 + 𝑎𝑥 + 𝑏, where a and b are integers.  If  |𝑓(0)|  452 and f(300) is a prime  

number, prove that f(x) = 0 has no integer solutions. 

 

 

 

 

3. In quadrilateral ABCD, AB = AD = 4, BC = CD = 5, and ADC  BCD. 

BA̅̅ ̅̅  and CD̅̅ ̅̅  are extended to meet at point P.   Compute, with proof, the distance  

from P to BC̅̅̅̅ . 

 

 

 

 

 

 

 

 
 

4. The product n(n + 13) is a perfect square when n = 36, since 36(36 + 13) = 1764 = 422.   

In fact, n = 36 is the only value of n for which n(n + 13) is a perfect square.  
 

Prove that for each prime number p > 2, there is exactly one positive integer n such that  

 n(n + p) is a perfect square. 

 

 
 

  

5.   In the diagram, AE = 2(EC), BD = 2(AD), and point F is  

 the midpoint of  DE̅̅ ̅̅ .   Compute, with proof, the ratio of the  

area of triangle BFC to the area of triangle ABC.   
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Solutions 

 

1. Method 1: Represent the four numbers in arithmetic sequence as  a, a + d, a + 2d, and a + 3d.   

 Then, the geometric sequence is a, a + d – 3, a + 2d, and a + 3d + 12.  Therefore, 
   

      
𝑎+𝑑−3

𝑎
 = 

𝑎+2𝑑

𝑎+𝑑−3
      (𝑎 + 𝑑 − 3)2 = 𝑎(𝑎 + 2𝑑)      𝑑2 = 6𝑎 + 6𝑑 − 9   (1) 

 

 Similarly, 
𝑎+3𝑑+12

𝑎+2𝑑
 = 

𝑎+2𝑑

𝑎+𝑑−3
    𝑑2 = 9𝑎 + 3𝑑 − 36. 

 

 Therefore, 6𝑎 + 6𝑑 − 9 =  9𝑎 + 3𝑑 − 36      a = d + 9.  

 Substituting this last equation into (1) and simplifying, 
  

           𝑑2 − 12𝑑 − 45 = 0         (𝑑 − 15)(𝑑 + 3) = 0       d = 15, d = –3. 

 

 If d = 15, a = 24, and the arithmetic sequence is 24, 39, 54, 69 

If d = –3, a = 6, and the arithmetic sequence is 6, 3, 0, –3. 

 

A quick check shows that 24, 39, 54, 69 satisfies the conditions of the problem, with  

the corresponding geometric sequence being 24, 36, 54, 81.  

However, 6, 3, 0, –3 does not work since 6, 0, 0, 9 is not a geometric sequence.   

Therefore, the only arithmetic sequence is 24, 39, 54, 69. 

 

 

Method 2: Represent the four numbers in arithmetic sequence as  a, a + d, a + 2d, and a + 3d.   

Let the terms of the geometric sequence be represented by  a, ar, 𝑎𝑟2, 𝑎𝑟3.  Then 

 

  (1)  ar = a + d – 3        and      (2)  𝑎𝑟2 = a + 2d        and      (3)  a + 3d = 𝑎𝑟3 − 12  

 

       From (1)  a(r – 1) = d – 3.       From (2)  a(𝑟2 − 1) = 2d        a(r – 1)(r + 1) = 2d. 
        

Therefore,  (d – 3)(r + 1) = 2d        (4)    r + 1 = 
2𝑑

𝑑−3
. 

       

From (3)  𝑎𝑟3 − 𝑎 = 3d + 12         a(𝑟3 − 1) = 3d + 12       a(r – 1)( 𝑟2 + 𝑟 + 1) = 3(d + 4) 

  

            Substituting  (1) into this last equation and dividing by d – 3, we obtain   

            (5)    (𝑟2 + 𝑟 + 1) = 
3(𝑑+4)

𝑑−3
. 

       Substituting (4) into (5) we obtain  𝑟2 + 
2𝑑

𝑑−3
 = 

3(𝑑+4)

𝑑−3
      𝑟2  = 

3(𝑑+4)
𝑑−3

 – 
2𝑑

𝑑−3
 = 

𝑑+12

𝑑−3
 . 

 

        From (4)  r = 
2𝑑

𝑑−3
 – 1 = 

𝑑+3

𝑑−3
       𝑟2  = 

(𝑑+3)2

(𝑑−3)2 . 

       Therefore, 
𝑑+12

𝑑−3
 = 

(𝑑+3)2

(𝑑−3)2  from which we eventually obtain d = 15.  Thus, from (4),   

r = 
3

2
  and from (1) a = 24.  Therefore, the only such arithmetic sequence is 24, 39, 54, 69. 

 

 

 

 



 

2. Assume that f(x) = 0 has an integer root 𝑥1.  Since the lead coefficient of 𝑥2 + 𝑎𝑥 + 𝑏 is 1,  

the sum of the roots is −𝑎.  Since a is an integer, f(x) has another integer root 𝑥2 = −𝑎 − 𝑥1.   

Thus, f(x) = (x − 𝑥1)(x − 𝑥2), and f(300) = (300 − 𝑥1)(300 − 𝑥2).  Without loss of generality,  

let 𝑥1 > 𝑥2. 
 

Since we are given f(300) is prime, this means that (300 − 𝑥1) = 1 and (300 − 𝑥2) is prime.  

Therefore, 𝑥1  299 while |𝑥2|  7 (since 293 and 307 are the closest primes to 300).   

Since the product of the roots of f(x) = 𝑥2 + 𝑎𝑥 + 𝑏 is b,  |𝑓(0)| = |𝑏| = |𝑥1𝑥2|  7·299 = 2093.  

But this is a contradiction, since we are given |𝑓(0)|  452 < 2093.   
 

Therefore, f(x) = 0 has no integer solutions. 

 

 

 

3. Method 1:  Construct diagonal AC̅̅̅̅ .  Since ADC  ABC (SSS), ADC  ABC.  Therefore, 

mDCA = mBCA = ½ mABC.  Let mBCA = x and mABC = 2x, and let AC = a.   

Using the Law of Sines on ABC, 

 

  
sin2𝑥

𝑎
 = 

sin𝑥

4
       

2(sin𝑥)(cos𝑥)

𝑎
 = 

sin𝑥

4
      cos x = 

𝑎

8
 . 

 

 

 

Using the Law of Cosines on ABC,  
 

42 = 52 + 𝑎2 − 2(5)(𝑎) (
𝑎
8

)    a = 6.  Then cos x = 
𝑎

8
 =  

3

4
,  and  cos2x = 2 (

3
4

)
2

– 1 = 
1

8
 . 

 

Now, construct the altitude of PBC to BC̅̅̅̅ , meeting BC̅̅̅̅  at point M.  Since PBC is isosceles  

(C  B), M is the midpoint of BC̅̅̅̅ .  Thus, BM = MC = 2.5.   

Then, in right PMB, cos B = 
2.5

PB
 = 

1
 8

 , and PB = 20.   
 

Finally, using the Pythagorean Theorem  
 

on PMB, PM2 =  202 − 2.52 = 393.75  
 

and PM = √393.75, or  
15√7

2
,  

which is the desired distance. 

 

Method 2:  Construct diagonal BD̅̅ ̅̅ .  Since ADB and CDB are both 

 isosceles triangles, ADC  ABC and both are congruent to BCD. 

 Thus, PBC is isosceles.  Let PB = x, PA = x – 4, and PD = x – 5.  

Using the Law of Cosines on PAD, 

(1)   16 = (𝑥 − 4)2 + (𝑥 − 5)2 − 2(𝑥 − 4)(𝑥 − 5)cos P 

 

4 

4 

5 

5 

2x 

x 

a 

P 

B 
A 

C D 

P 

B 
A 

C D 

M 

4 

4 

5 

5 

P 

B 
A 

C D x – 5 



Using the Law of Cosines on PBC, 

25 = 𝑥2 + 𝑥2 − 2𝑥2cos P     cos P = 
2𝑥2−25

2𝑥2 . 

Substituting into (1) above,  

16 = 2𝑥2 − 18𝑥 + 41 − 2(𝑥2 − 9𝑥 + 20) (
2𝑥2−25

2𝑥2 ). 

Carefully simplifying this last equation, we obtain 2𝑥2 − 45𝑥 + 100 = 0 

Factoring, (2𝑥 − 5)(𝑥 − 20) = 0 from which x = 
5

2
 (impossible) and x = 20. 

Finally, construct the altitude of PM of PBC and noting that M is the midpoint of BC,  

use the Pythagorean Theorem on PMB. 
 

PM2 =  202 − 2.52 = 393.75  
 

and PM = √393.75, or  
15√7

2
,  

which is the desired distance.  

 

 

 

 

4. Assume that 𝑛(𝑛 + 𝑝) = 𝑎2 for some positive integer a.   

 We first prove that n is not a multiple of p.   

 Suppose that 𝑛 = 𝑘𝑝 for some integer k.  Then 𝑛 + 𝑝 = 𝑘𝑝 + 𝑝 = (𝑘 + 1)𝑝  and, therefore, 

   𝑎2 = 𝑛(𝑛 + 𝑝) = 𝑝2𝑘(𝑘 + 1) 

 Hence, p must divide a which means  
𝑎

𝑝
  is an integer, and 𝑘(𝑘 + 1) = (

𝑎

𝑝
)

2

.    

 Then, k <  
𝑎

𝑝
 < k + 1, which is impossible.  Therefore, n is not a multiple of p. 

  

 Next, we prove that n and n + p have no common prime factors.  Suppose a prime q divides 

both n and n + p.  Then q divides (n + p) – n = p, and p = q.  But we already know that p does 

not divide n.  So n and n + p have no common prime factors.   

  

 Since 𝑎2 = 𝑛(𝑛 + 𝑝), and n and n + p have no common prime factors, both n and n + p  

 must be perfect squares.  Let 𝑛 + 𝑝 = 𝑢2 and 𝑛 = 𝑣2 for some integers u and v. Then  

 𝑝 = 𝑢2 − 𝑣2 = (𝑢 + 𝑣)(𝑢 − 𝑣).  Since p is prime, 𝑢 + 𝑣 = 𝑝 and 𝑢 − 𝑣 = 1.  Subtracting  

 these two equations, and solving for v, we get 𝑣 = 
𝑝 − 1

2
 and n = 𝑣2 = (

𝑝 − 1

2
)

2

, which is  

 an integer since p – 1 is even.  This is the only possible value of n for which 𝑛(𝑛 + 𝑝) could  

 be a square.  Also, 𝑛 + 𝑝 = (
𝑝 − 1

2
)

2
+ p = 

𝑝2+ 2𝑝 + 1

4
 =  (

𝑝 + 1

2
)

2

is the square of an integer, 

and so the product 𝑛(𝑛 + 𝑝) is a square.  
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5.   The desired ratio is  
1

2
 . 

 

Method 1 

 

Construct AF̅̅̅̅  and BE̅̅̅̅ .   Represent the area of ABC as [ABC]. 
 

 [AFE] = [AFD], since DF = FE, and AFE and AFD have  

the same altitude from point A.  Similarly, [BFE] = [BFD]. 
 

Thus, [AEB] = 2[AFB], 
 

[AFE] = 2[EFC], since AE = 2(EC) and AFE and EFC  

have the same altitude from point F.  Similarly, [BFD] = 2[AFD] = 2[AFE] = 4[EFC]. 
 

Also, [ADE] = [AFD] + [AFE] = 4[EFC]. 
 

[AEB] = 
2

3
 [ABC], since AE = 

2

3
 AC and the triangles have the same altitude from point B. 

 

  Therefore, [AEB] = 2[AFB] = 
2

3
 [ABC]      [AFB] = 

1

3
 [ABC]   

 

 Also, [AFB] = [AFD] + [BFD] = [AFE] + [BFD]  

= 2[EFC] + 2[AFD] = 2[EFC] + 4[EFC] = 6[EFC] . 
 

 Therefore, [AFB] = 
1

3
 [ABC] = 6[EFC]      [EFC] = 

1

18
 [ABC]. 

 

 Finally, [BFC] = [ABC] – [EFC] – [ADE] – [BFD]  

  

   = [ABC] – 
1

18
 [ABC] – 

4

18
 [ABC] – 

4

18
 [ABC] = 

1

2
[ABC]. 

 

Method 2 

 

Construct perpendiculars from D, A, F, and E to BC̅̅̅̅ , and 

label the points of intersection  D1, A1, F1, and E1, respectively. 
 

The area of ABC = 
1

2
(BC)(AA1) 

 

Since DD1 is parallel to AA1, DD1B is similar to AA1B. 

Therefore, 
DD1

AA1
=

DB

AB
=

2

3
      DD1 = 

2

3
AA1 . 

 

Similarly, EE1C is similar to AA1C, and  
EE1

AA1
=

EC

AC
=

1

3
     EE1 = 

1

3
AA1. 

 

Since F is the midpoint of ED̅̅ ̅̅ , FF1is the median of trapezoid EE1D1D.  

Then, FF1 = 
1

2
 (EE1 + DD1) = 

1

2
 (

1

3
AA1 + 

2

3
AA1) = 

1

2
AA1. 

 

Thus, the area of BCF = 
1

2
(BC)(FF1 ) = 

1

2
(BC)(

1

2
AA1) = 

1

2
 [

1

2
(BC)(AA1)]. 

Therefore, the area of BCF is half the area of ABC. 
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Method 3 

 

Let EC = x, EA = 2x, AD = y, BD = 2y, and DF = EF = w. 

 

Let ADE =   and  AED = . 

 

Area ABC = 
1

2
(3𝑥)(3𝑦)sinA =  

9𝑥𝑦sinA

2
. 

Area AED = 
1

2
(2𝑥)(𝑦)sinA =  𝑥𝑦sinA. 

Area EFC = 
1

2
𝑥𝑤 sin(180 − 𝛽) =  

1

2
𝑥𝑤sin𝛽. 

Area FDB = 
1

2
𝑤(2𝑦) sin(180 − 𝛼) =  𝑦𝑤sin𝛼. 

Using the Law of Sines on AED, 
2𝑥

sin𝛼
 = 

2𝑤

sinA
 = 

𝑦

sin𝛽
. 

 

Therefore, sin𝛽 =
𝑦sinA

2𝑤
  and  sin𝛼 =

𝑥sinA
𝑤

. 

Then Area EFC = 
1

2
𝑥𝑤 (

𝑦sinA

2𝑤
) = 

𝑥𝑦sinA

4
, and Area FDB = 𝑦𝑤 (

𝑥sinA
𝑤

) = 𝑥𝑦sinA. 

Therefore,  

 
AreaBFC

AreaABC
 = 

AreaABC−AreaAED−AreaEFC−AreaFDB

AreaABC
 =  

 

 

 

 

C 

E 

A 
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F 

 

2x 

x 

2y 
y 

w 

w 

 

 

9𝑥𝑦sinA

2
 – 𝑥𝑦sinA – 

𝑥𝑦sinA

4
 – 𝑥𝑦sinA 

9𝑥𝑦sinA

2
 

=  

൬
9

2
− 1 −  

1

4
− 1൰ 𝑥𝑦sinA 

9

2
𝑥𝑦sinA 

= 
1

2
 . 


