Time allowed: 2 hours

1. Four numbers are in arithmetic sequence. If the second number is decreased by 3 and the fourth number is increased by 12 , the four numbers, in the same order, would then be in geometric sequence. Find all possible four number arithmetic sequences and prove that you have found them all.
2. Let $f(x)=x^{2}+a x+b$, where $a$ and $b$ are integers. If $|f(0)| \leq 45^{2}$ and $f(300)$ is a prime number, prove that $f(x)=0$ has no integer solutions.
3. In quadrilateral $\mathrm{ABCD}, \mathrm{AB}=\mathrm{AD}=4, \mathrm{BC}=\mathrm{CD}=5$, and $\angle \mathrm{ADC} \cong \angle \mathrm{BCD}$.
$\overline{\mathrm{BA}}$ and $\overline{\mathrm{CD}}$ are extended to meet at point P . Compute, with proof, the distance from P to $\overline{\mathrm{BC}}$.

4. The product $n(n+13)$ is a perfect square when $n=36$, since $36(36+13)=1764=42^{2}$. In fact, $n=36$ is the only value of $n$ for which $n(n+13)$ is a perfect square.
Prove that for each prime number $p>2$, there is exactly one positive integer $n$ such that $n(n+p)$ is a perfect square.
5. In the diagram, $\mathrm{AE}=2(\mathrm{EC}), \mathrm{BD}=2(\mathrm{AD})$, and point F is the midpoint of $\overline{\mathrm{DE}}$. Compute, with proof, the ratio of the area of triangle BFC to the area of triangle ABC .


## Solutions

1. Method 1: Represent the four numbers in arithmetic sequence as $a, a+d, a+2 d$, and $a+3 d$. Then, the geometric sequence is $a, a+d-3, a+2 d$, and $a+3 d+12$. Therefore,

$$
\begin{equation*}
\frac{a+d-3}{a}=\frac{a+2 d}{a+d-3} \Rightarrow(a+d-3)^{2}=a(a+2 d) \Rightarrow d^{2}=6 a+6 d-9 \tag{1}
\end{equation*}
$$

Similarly, $\frac{a+3 d+12}{a+2 d}=\frac{a+2 d}{a+d-3} \Rightarrow d^{2}=9 a+3 d-36$.
Therefore, $6 a+6 d-9=9 a+3 d-36 \Rightarrow a=d+9$.
Substituting this last equation into (1) and simplifying,

$$
d^{2}-12 d-45=0 \Rightarrow(d-15)(d+3)=0 \Rightarrow d=15, d=-3
$$

If $d=15, a=24$, and the arithmetic sequence is $24,39,54,69$
If $d=-3, a=6$, and the arithmetic sequence is $6,3,0,-3$.
A quick check shows that $24,39,54,69$ satisfies the conditions of the problem, with the corresponding geometric sequence being $24,36,54,81$.
However, $6,3,0,-3$ does not work since $6,0,0,9$ is not a geometric sequence.
Therefore, the only arithmetic sequence is $24,39,54,69$.

Method 2: Represent the four numbers in arithmetic sequence as $a, a+d, a+2 d$, and $a+3 d$. Let the terms of the geometric sequence be represented by $a, a r, a r^{2}, a r^{3}$. Then
(1) $a r=a+d-3 \quad$ and (2) $a r^{2}=a+2 d \quad$ and $\quad$ (3) $a+3 d=a r^{3}-12$

From (1) $a(r-1)=d-3 . \quad$ From (2) $a\left(r^{2}-1\right)=2 d \quad \Rightarrow \quad a(r-1)(r+1)=2 d$.
Therefore, $(d-3)(r+1)=2 d \quad \Rightarrow$ (4) $r+1=\frac{2 d}{d-3}$.
From (3) $a r^{3}-a=3 d+12 \Rightarrow a\left(r^{3}-1\right)=3 \mathrm{~d}+12 \Rightarrow a(r-1)\left(r^{2}+r+1\right)=3(d+4)$
Substituting (1) into this last equation and dividing by $d-3$, we obtain
(5) $\left(r^{2}+r+1\right)=\frac{3(d+4)}{d-3}$.

Substituting (4) into (5) we obtain $r^{2}+\frac{2 d}{d-3}=\frac{3(d+4)}{d-3} \Rightarrow r^{2}=\frac{3(d+4)}{d-3}-\frac{2 d}{d-3}=\frac{d+12}{d-3}$.
From (4) $r=\frac{2 d}{d-3}-1=\frac{d+3}{d-3} \Rightarrow r^{2}=\frac{(d+3)^{2}}{(d-3)^{2}}$.
Therefore, $\frac{d+12}{d-3}=\frac{(d+3)^{2}}{(d-3)^{2}}$ from which we eventually obtain $d=15$. Thus, from (4), $r=\frac{3}{2}$ and from (1) $a=24$. Therefore, the only such arithmetic sequence is $24,39,54,69$.
2. Assume that $f(x)=0$ has an integer root $x_{1}$. Since the lead coefficient of $x^{2}+a x+b$ is 1 , the sum of the roots is $-a$. Since $a$ is an integer, $f(x)$ has another integer root $x_{2}=-a-x_{1}$. Thus, $f(x)=\left(x-x_{1}\right)\left(x-x_{2}\right)$, and $f(300)=\left(300-x_{1}\right)\left(300-x_{2}\right)$. Without loss of generality, let $x_{1}>x_{2}$.

Since we are given $f(300)$ is prime, this means that $\left(300-x_{1}\right)= \pm 1$ and $\left(300-x_{2}\right)$ is prime.
Therefore, $x_{1} \geq 299$ while $\left|x_{2}\right| \geq 7$ (since 293 and 307 are the closest primes to 300).
Since the product of the roots of $f(x)=x^{2}+a x+b$ is $b,|f(0)|=|b|=\left|x_{1} x_{2}\right| \geq 7 \cdot 299=2093$. But this is a contradiction, since we are given $|f(0)| \leq 45^{2}<2093$.

Therefore, $f(x)=0$ has no integer solutions.
3. Method 1: Construct diagonal $\overline{\mathrm{AC}}$. Since $\triangle \mathrm{ADC} \cong \triangle \mathrm{ABC}$ (SSS), $\angle \mathrm{ADC} \cong \angle \mathrm{ABC}$. Therefore, $\mathrm{m} \angle \mathrm{DCA}=\mathrm{m} \angle \mathrm{BCA}=1 / 2 \mathrm{~m} \angle \mathrm{ABC}$. Let $\mathrm{m} \angle \mathrm{BCA}=x$ and $\mathrm{m} \angle \mathrm{ABC}=2 x$, and let $\mathrm{AC}=a$. Using the Law of Sines on $\triangle \mathrm{ABC}$,

$4^{2}=5^{2}+a^{2}-2(5)(a)\left(\frac{a}{8}\right) \Rightarrow a=6$. Then $\cos x=\frac{a}{8}=\frac{3}{4}$, and $\cos 2 x=2\left(\frac{3}{4}\right)^{2}-1=\frac{1}{8}$.
Now, construct the altitude of $\triangle \mathrm{PBC}$ to $\overline{\mathrm{BC}}$, meeting $\overline{\mathrm{BC}}$ at point M . Since $\triangle \mathrm{PBC}$ is isosceles $(\angle \mathrm{C} \cong \angle \mathrm{B}), \mathrm{M}$ is the midpoint of $\overline{\mathrm{BC}}$. Thus, $\mathrm{BM}=\mathrm{MC}=2.5$.
Then, in right $\triangle \mathrm{PMB}, \cos \mathrm{B}=\frac{2.5}{\mathrm{~PB}}=\frac{1}{8}$, and $\mathrm{PB}=20$.
Finally, using the Pythagorean Theorem on $\triangle \mathrm{PMB}, \mathrm{PM}^{2}=20^{2}-2.5^{2}=393.75$
and $\mathrm{PM}=\sqrt{393.75}$, or $\frac{15 \sqrt{7}}{2}$,
which is the desired distance.


Method 2: Construct diagonal $\overline{\mathrm{BD}}$. Since $\triangle \mathrm{ADB}$ and $\triangle \mathrm{CDB}$ are both isosceles triangles, $\angle \mathrm{ADC} \cong \angle \mathrm{ABC}$ and both are congruent to $\angle \mathrm{BCD}$.
Thus, $\triangle \mathrm{PBC}$ is isosceles. Let $\mathrm{PB}=x, \mathrm{PA}=x-4$, and $\mathrm{PD}=x-5$.
Using the Law of Cosines on $\triangle \mathrm{PAD}$,
(1) $16=(x-4)^{2}+(x-5)^{2}-2(x-4)(x-5) \cos P$


Using the Law of Cosines on $\triangle \mathrm{PBC}$,
$25=x^{2}+x^{2}-2 x^{2} \cos \mathrm{P} \Rightarrow \cos \mathrm{P}=\frac{2 x^{2}-25}{2 x^{2}}$.
Substituting into (1) above,
$16=2 x^{2}-18 x+41-2\left(x^{2}-9 x+20\right)\left(\frac{2 x^{2}-25}{2 x^{2}}\right)$.
Carefully simplifying this last equation, we obtain $2 x^{2}-45 x+100=0$
Factoring, $(2 x-5)(x-20)=0$ from which $x=\frac{5}{2}$ (impossible) and $x=20$.
Finally, construct the altitude of PM of $\triangle \mathrm{PBC}$ and noting that M is the midpoint of BC , use the Pythagorean Theorem on $\triangle \mathrm{PMB}$.
$\mathrm{PM}^{2}=20^{2}-2.5^{2}=393.75$
and $\mathrm{PM}=\sqrt{393.75}$, or $\frac{15 \sqrt{7}}{2}$,
which is the desired distance.

4. Assume that $n(n+p)=a^{2}$ for some positive integer $a$.

We first prove that $n$ is not a multiple of $p$.
Suppose that $n=k p$ for some integer $k$. Then $n+p=k p+p=(k+1) p$ and, therefore,

$$
a^{2}=n(n+p)=p^{2} k(k+1)
$$

Hence, $p$ must divide $a$ which means $\frac{a}{p}$ is an integer, and $k(k+1)=\left(\frac{a}{p}\right)^{2}$.
Then, $k<\frac{a}{p}<k+1$, which is impossible. Therefore, $n$ is not a multiple of $p$.
Next, we prove that $n$ and $n+p$ have no common prime factors. Suppose a prime $q$ divides both $n$ and $n+p$. Then $q$ divides $(n+p)-n=p$, and $p=q$. But we already know that $p$ does not divide $n$. So $n$ and $n+p$ have no common prime factors.

Since $a^{2}=n(n+p)$, and $n$ and $n+p$ have no common prime factors, both $n$ and $n+p$ must be perfect squares. Let $n+p=u^{2}$ and $n=v^{2}$ for some integers $u$ and $v$. Then $p=u^{2}-v^{2}=(u+v)(u-v)$. Since $p$ is prime, $u+v=p$ and $u-v=1$. Subtracting these two equations, and solving for $v$, we get $v=\frac{p-1}{2}$ and $n=v^{2}=\left(\frac{p-1}{2}\right)^{2}$, which is an integer since $p-1$ is even. This is the only possible value of $n$ for which $n(n+p)$ could be a square. Also, $n+p=\left(\frac{p-1}{2}\right)^{2}+p=\frac{p^{2}+2 p+1}{4}=\left(\frac{p+1}{2}\right)^{2}$ is the square of an integer, and so the product $n(n+p)$ is a square.
5. The desired ratio is $\frac{1}{2}$.

## Method 1

Construct $\overline{\mathrm{AF}}$ and $\overline{\mathrm{BE}}$. Represent the area of $\triangle \mathrm{ABC}$ as $[\triangle \mathrm{ABC}]$. $[\triangle \mathrm{AFE}]=[\triangle \mathrm{AFD}]$, since $\mathrm{DF}=\mathrm{FE}$, and $\triangle \mathrm{AFE}$ and $\triangle \mathrm{AFD}$ have the same altitude from point A. Similarly, $[\Delta \mathrm{BFE}]=[\Delta \mathrm{BFD}]$.

Thus, $[\triangle \mathrm{AEB}]=2[\Delta \mathrm{AFB}]$,

$[\triangle \mathrm{AFE}]=2[\triangle \mathrm{EFC}]$, since $\mathrm{AE}=2(\mathrm{EC})$ and $\triangle \mathrm{AFE}$ and $\triangle \mathrm{EFC}$
have the same altitude from point F. Similarly, $[\Delta \mathrm{BFD}]=2[\Delta \mathrm{AFD}]=2[\Delta \mathrm{AFE}]=4[\Delta \mathrm{EFC}]$.
Also, $[\Delta \mathrm{ADE}]=[\Delta \mathrm{AFD}]+[\Delta \mathrm{AFE}]=4[\Delta \mathrm{EFC}]$.
$[\triangle \mathrm{AEB}]=\frac{2}{3}[\triangle \mathrm{ABC}]$, since $\mathrm{AE}=\frac{2}{3} \mathrm{AC}$ and the triangles have the same altitude from point B .
Therefore, $[\Delta \mathrm{AEB}]=2[\Delta \mathrm{AFB}]=\frac{2}{3}[\Delta \mathrm{ABC}] \Rightarrow[\Delta \mathrm{AFB}]=\frac{1}{3}[\Delta \mathrm{ABC}]$
Also, $[\Delta \mathrm{AFB}]=[\Delta \mathrm{AFD}]+[\Delta \mathrm{BFD}]=[\Delta \mathrm{AFE}]+[\Delta \mathrm{BFD}]$ $=2[\Delta \mathrm{EFC}]+2[\Delta \mathrm{AFD}]=2[\Delta \mathrm{EFC}]+4[\Delta \mathrm{EFC}]=6[\Delta \mathrm{EFC}]$.
Therefore, $[\Delta \mathrm{AFB}]=\frac{1}{3}[\Delta \mathrm{ABC}]=6[\Delta \mathrm{EFC}] \Rightarrow[\Delta \mathrm{EFC}]=\frac{1}{18}[\Delta \mathrm{ABC}]$.
Finally, $[\Delta \mathrm{BFC}]=[\Delta \mathrm{ABC}]-[\Delta \mathrm{EFC}]-[\Delta \mathrm{ADE}]-[\Delta \mathrm{BFD}]$

$$
=[\Delta \mathrm{ABC}]-\frac{1}{18}[\Delta \mathrm{ABC}]-\frac{4}{18}[\Delta \mathrm{ABC}]-\frac{4}{18}[\Delta \mathrm{ABC}]=\frac{1}{2}[\Delta \mathrm{ABC}] .
$$

## Method 2

Construct perpendiculars from $\mathrm{D}, \mathrm{A}, \mathrm{F}$, and E to $\overline{\mathrm{BC}}$, and label the points of intersection $D_{1}, A_{1}, F_{1}$, and $E_{1}$, respectively.
The area of $\Delta \mathrm{ABC}=\frac{1}{2}(\mathrm{BC})\left(\mathrm{AA}_{1}\right)$
Since $D_{1}$ is parallel to $A A_{1}, \Delta D_{1} B$ is similar to $\triangle A A_{1} B$. Therefore, $\frac{\mathrm{DD}_{1}}{\mathrm{AA}_{1}}=\frac{\mathrm{DB}}{\mathrm{AB}}=\frac{2}{3} \Rightarrow \mathrm{DD}_{1}=\frac{2}{3} \mathrm{AA}_{1}$.


Similarly, $\triangle \mathrm{EE}_{1} \mathrm{C}$ is similar to $\triangle \mathrm{AA}_{1} \mathrm{C}$, and $\frac{\mathrm{EE}_{1}}{\mathrm{AA}_{1}}=\frac{\mathrm{EC}}{\mathrm{AC}}=\frac{1}{3} \Rightarrow \mathrm{EE}_{1}=\frac{1}{3} \mathrm{AA}_{1}$.
Since $F$ is the midpoint of $\overline{E D}, F_{1}$ is the median of trapezoid $E E_{1} D_{1} D$.
Then, $\mathrm{FF}_{1}=\frac{1}{2}\left(\mathrm{EE}_{1}+\mathrm{DD}_{1}\right)=\frac{1}{2}\left(\frac{1}{3} \mathrm{AA}_{1}+\frac{2}{3} \mathrm{AA}_{1}\right)=\frac{1}{2} \mathrm{AA}_{1}$.
Thus, the area of $\Delta \mathrm{BCF}=\frac{1}{2}(\mathrm{BC})\left(\mathrm{FF}_{1}\right)=\frac{1}{2}(\mathrm{BC})\left(\frac{1}{2} \mathrm{AA}_{1}\right)=\frac{1}{2}\left[\frac{1}{2}(\mathrm{BC})\left(\mathrm{AA}_{1}\right)\right]$. Therefore, the area of $\triangle \mathrm{BCF}$ is half the area of $\triangle \mathrm{ABC}$.

## Method 3

Let $\mathrm{EC}=x, \mathrm{EA}=2 x, \mathrm{AD}=y, \mathrm{BD}=2 y$, and $\mathrm{DF}=\mathrm{EF}=w$.
Let $\angle \mathrm{ADE}=\alpha$ and $\angle \mathrm{AED}=\beta$.
Area $\triangle \mathrm{ABC}=\frac{1}{2}(3 x)(3 y) \sin \mathrm{A}=\frac{9 x y \sin \mathrm{~A}}{2}$.
Area $\triangle \mathrm{AED}=\frac{1}{2}(2 x)(y) \sin \mathrm{A}=x y \sin \mathrm{~A}$.
Area $\Delta \mathrm{EFC}=\frac{1}{2} x w \sin (180-\beta)=\frac{1}{2} x w \sin \beta$.


Area $\triangle \mathrm{FDB}=\frac{1}{2} w(2 y) \sin (180-\alpha)=y w \sin \alpha$.
Using the Law of Sines on $\triangle \mathrm{AED}, \frac{2 x}{\sin \alpha}=\frac{2 w}{\sin \mathrm{~A}}=\frac{y}{\sin \beta}$.
Therefore, $\sin \beta=\frac{y \sin \mathrm{~A}}{2 w}$ and $\sin \alpha=\frac{x \sin \mathrm{~A}}{w}$.
Then Area $\Delta \mathrm{EFC}=\frac{1}{2} x w\left(\frac{y \sin \mathrm{~A}}{2 w}\right)=\frac{x y \sin \mathrm{~A}}{4}$, and Area $\Delta \mathrm{FDB}=y w\left(\frac{x \sin \mathrm{~A}}{w}\right)=x y \sin \mathrm{~A}$.
Therefore,

$$
\begin{aligned}
& \frac{\operatorname{Area} \triangle \mathrm{BFC}}{\text { Area } \triangle \mathrm{ABC}}=\frac{\operatorname{Area} \triangle \mathrm{ABC}-\mathrm{Area} \triangle \mathrm{AED}-\mathrm{Area} \triangle \mathrm{EFC}-\mathrm{Area} \triangle \mathrm{FDB}}{\operatorname{Area} \triangle \mathrm{ABC}}= \\
& \frac{\frac{9 x y \sin \mathrm{~A}}{2}-x y \sin \mathrm{~A}-\frac{x y \sin \mathrm{~A}}{4}-x y \sin \mathrm{~A}}{\frac{9 x y \sin \mathrm{~A}}{2}}=\frac{\left(\frac{9}{2}-1-\frac{1}{4}-1\right) x y \sin \mathrm{~A}}{\frac{9}{2} x y \sin \mathrm{~A}}=\frac{1}{2}
\end{aligned}
$$

